尖峰深度神经网络的神经形态架构

G. Indiveri, Federico Corradi, Ning Qiao
{"title":"尖峰深度神经网络的神经形态架构","authors":"G. Indiveri, Federico Corradi, Ning Qiao","doi":"10.1109/IEDM.2015.7409623","DOIUrl":null,"url":null,"abstract":"We present a full custom hardware implementation of a deep neural network, built using multiple neuromorphic VLSI devices that integrate analog neuron and synapse circuits together with digital asynchronous logic circuits. The deep network comprises an event-based convolutional stage for feature extraction connected to a spike-based learning stage for feature classification. We describe the properties of the chips used to implement the network and present preliminary experimental results that validate the approach proposed.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":"{\"title\":\"Neuromorphic architectures for spiking deep neural networks\",\"authors\":\"G. Indiveri, Federico Corradi, Ning Qiao\",\"doi\":\"10.1109/IEDM.2015.7409623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a full custom hardware implementation of a deep neural network, built using multiple neuromorphic VLSI devices that integrate analog neuron and synapse circuits together with digital asynchronous logic circuits. The deep network comprises an event-based convolutional stage for feature extraction connected to a spike-based learning stage for feature classification. We describe the properties of the chips used to implement the network and present preliminary experimental results that validate the approach proposed.\",\"PeriodicalId\":336637,\"journal\":{\"name\":\"2015 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"135\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2015.7409623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135

摘要

我们提出了一个深度神经网络的完整定制硬件实现,该网络使用多个神经形态的VLSI设备构建,该设备将模拟神经元和突触电路与数字异步逻辑电路集成在一起。深度网络包括用于特征提取的基于事件的卷积阶段,连接到用于特征分类的基于尖峰的学习阶段。我们描述了用于实现该网络的芯片的特性,并给出了验证所提出方法的初步实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuromorphic architectures for spiking deep neural networks
We present a full custom hardware implementation of a deep neural network, built using multiple neuromorphic VLSI devices that integrate analog neuron and synapse circuits together with digital asynchronous logic circuits. The deep network comprises an event-based convolutional stage for feature extraction connected to a spike-based learning stage for feature classification. We describe the properties of the chips used to implement the network and present preliminary experimental results that validate the approach proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信