单细胞转录组学揭示了pbmc和其他细胞类型特有的总结模式

Jingjie Xu, R. A. Shaikh, V. Brusic
{"title":"单细胞转录组学揭示了pbmc和其他细胞类型特有的总结模式","authors":"Jingjie Xu, R. A. Shaikh, V. Brusic","doi":"10.1109/BIBM.2018.8621396","DOIUrl":null,"url":null,"abstract":"Single cell transcriptomics (SCT) reveals cellular patterns that are masked and hidden in bulk RNA experiments. We analyzed 100 human SCT data sets for summary patterns that quantify gene expression per individual cell as well as per gene. Peripheral Blood Mononuclear Cells (PBMCs) show patterns different to those of cancer cell lines, stem cells, embryonic stem cells and other cell types. The results indicate that classification methods based on overall properties of SCT data sets provide a useful first step for classification of cell types and subtypes.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Single Cell Transcriptomics Reveals Summary Patterns Specific for PBMCs and Other Cell Types\",\"authors\":\"Jingjie Xu, R. A. Shaikh, V. Brusic\",\"doi\":\"10.1109/BIBM.2018.8621396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single cell transcriptomics (SCT) reveals cellular patterns that are masked and hidden in bulk RNA experiments. We analyzed 100 human SCT data sets for summary patterns that quantify gene expression per individual cell as well as per gene. Peripheral Blood Mononuclear Cells (PBMCs) show patterns different to those of cancer cell lines, stem cells, embryonic stem cells and other cell types. The results indicate that classification methods based on overall properties of SCT data sets provide a useful first step for classification of cell types and subtypes.\",\"PeriodicalId\":108667,\"journal\":{\"name\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2018.8621396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

单细胞转录组学(SCT)揭示了在大量RNA实验中被掩盖和隐藏的细胞模式。我们分析了100个人类SCT数据集,以获得量化每个细胞和每个基因的基因表达的总结模式。外周血单核细胞(Peripheral Blood Mononuclear Cells, PBMCs)表现出与癌细胞系、干细胞、胚胎干细胞和其他细胞类型不同的模式。结果表明,基于SCT数据集整体属性的分类方法为细胞类型和亚型的分类提供了有用的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single Cell Transcriptomics Reveals Summary Patterns Specific for PBMCs and Other Cell Types
Single cell transcriptomics (SCT) reveals cellular patterns that are masked and hidden in bulk RNA experiments. We analyzed 100 human SCT data sets for summary patterns that quantify gene expression per individual cell as well as per gene. Peripheral Blood Mononuclear Cells (PBMCs) show patterns different to those of cancer cell lines, stem cells, embryonic stem cells and other cell types. The results indicate that classification methods based on overall properties of SCT data sets provide a useful first step for classification of cell types and subtypes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信