非均匀多通道无线网状网络的吞吐量和QoS优化

T. Szymanski
{"title":"非均匀多通道无线网状网络的吞吐量和QoS优化","authors":"T. Szymanski","doi":"10.1145/1454586.1454589","DOIUrl":null,"url":null,"abstract":"A technology to increase throughput and QoS in infrastructure-based Wireless Mesh Networks (WMNs) is proposed. In a uniform WMN, let each Base Station (BS) have R1 transceivers for communications with neighboring BSs, and R2 transceivers for communications with the Stationary and Mobile Subscribers within the wireless cell. One Gateway BS provides access to the global Internet, and the throughput capacity of the entire WMN is constrained by the IO bandwidth of the Gateway. A small number of extra wireless links can be added to the Gateway BS and selected other BSs, resulting in a nonuniform system. The addition of an asymptotically small number of transceivers can increase WMN capacity several fold. Efficient scheduling requires the partitioning of an asymmetric bipartite graph representing a general traffic rate matrix, into multiple graphs representing doubly-stochastic matrices. Routing and scheduling algorithms presented. The algorithms can provision long-term multimedia flows including VOIP or IPTV with guaranteed service. For multichannel WMNs where the traffic is routed and partitioned, the number of queued cells per BS is near-minimal and bounded, the end-to-end delay and jitter are near-minimal and bounded, and cell loss rates due to scheduling conflicts are zero. The algorithm also achieves 100% of capacity.","PeriodicalId":369459,"journal":{"name":"Q2S and Security for Wireless and Mobile Networks","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Throughput and QoS optimization in nonuniform multichannel wireless mesh networks\",\"authors\":\"T. Szymanski\",\"doi\":\"10.1145/1454586.1454589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technology to increase throughput and QoS in infrastructure-based Wireless Mesh Networks (WMNs) is proposed. In a uniform WMN, let each Base Station (BS) have R1 transceivers for communications with neighboring BSs, and R2 transceivers for communications with the Stationary and Mobile Subscribers within the wireless cell. One Gateway BS provides access to the global Internet, and the throughput capacity of the entire WMN is constrained by the IO bandwidth of the Gateway. A small number of extra wireless links can be added to the Gateway BS and selected other BSs, resulting in a nonuniform system. The addition of an asymptotically small number of transceivers can increase WMN capacity several fold. Efficient scheduling requires the partitioning of an asymmetric bipartite graph representing a general traffic rate matrix, into multiple graphs representing doubly-stochastic matrices. Routing and scheduling algorithms presented. The algorithms can provision long-term multimedia flows including VOIP or IPTV with guaranteed service. For multichannel WMNs where the traffic is routed and partitioned, the number of queued cells per BS is near-minimal and bounded, the end-to-end delay and jitter are near-minimal and bounded, and cell loss rates due to scheduling conflicts are zero. The algorithm also achieves 100% of capacity.\",\"PeriodicalId\":369459,\"journal\":{\"name\":\"Q2S and Security for Wireless and Mobile Networks\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Q2S and Security for Wireless and Mobile Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1454586.1454589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Q2S and Security for Wireless and Mobile Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1454586.1454589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种提高基于基础设施的无线网状网络(WMNs)吞吐量和服务质量的技术。在统一WMN中,让每个基站(BS)具有R1收发器用于与相邻基站通信,R2收发器用于与无线小区内的固定和移动用户通信。一个网关BS提供对全球Internet的访问,整个WMN的吞吐量受到网关的IO带宽的限制。少量额外的无线链路可以添加到网关BS和选定的其他BS,从而形成一个不均匀的系统。渐近的少量收发器的增加可以使WMN容量增加数倍。高效调度需要将表示一般流量矩阵的非对称二部图划分为表示双随机矩阵的多个图。给出了路由和调度算法。该算法可以为VOIP、IPTV等长期多媒体流提供有保障的服务。对于流量路由和分区的多通道wmn,每个BS的队列单元数几乎最小且有界,端到端延迟和抖动几乎最小且有界,并且由于调度冲突导致的单元损失率为零。该算法也达到了100%的容量利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Throughput and QoS optimization in nonuniform multichannel wireless mesh networks
A technology to increase throughput and QoS in infrastructure-based Wireless Mesh Networks (WMNs) is proposed. In a uniform WMN, let each Base Station (BS) have R1 transceivers for communications with neighboring BSs, and R2 transceivers for communications with the Stationary and Mobile Subscribers within the wireless cell. One Gateway BS provides access to the global Internet, and the throughput capacity of the entire WMN is constrained by the IO bandwidth of the Gateway. A small number of extra wireless links can be added to the Gateway BS and selected other BSs, resulting in a nonuniform system. The addition of an asymptotically small number of transceivers can increase WMN capacity several fold. Efficient scheduling requires the partitioning of an asymmetric bipartite graph representing a general traffic rate matrix, into multiple graphs representing doubly-stochastic matrices. Routing and scheduling algorithms presented. The algorithms can provision long-term multimedia flows including VOIP or IPTV with guaranteed service. For multichannel WMNs where the traffic is routed and partitioned, the number of queued cells per BS is near-minimal and bounded, the end-to-end delay and jitter are near-minimal and bounded, and cell loss rates due to scheduling conflicts are zero. The algorithm also achieves 100% of capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信