深度学习语言建模工作负载:图形处理器的发展方向

Ali Hadi Zadeh, Zissis Poulos, Andreas Moshovos
{"title":"深度学习语言建模工作负载:图形处理器的发展方向","authors":"Ali Hadi Zadeh, Zissis Poulos, Andreas Moshovos","doi":"10.1109/IISWC47752.2019.9041972","DOIUrl":null,"url":null,"abstract":"Language Modeling is at the core of many natural language processing tasks. We analyze two such recent models: a Gated Convolutional Network (GCN) with five layers on the Wikitext-2 dataset and a Transformer network with 24 layers on the Google Billion Word dataset. We find that when executed on modern graphics processors, 30% - 40% of the execution time is due to the final adaptive softmax layer. Analytical modeling of the computation and memory demands of the GCN shows that this behavior will persist even if the hidden state is increased - which could be needed to improve accuracy or to support a wider vocabulary. We present variations of the adaptive softmax layer that reduce execution time for the layer by 40% and that scale better with the hidden state.","PeriodicalId":121068,"journal":{"name":"2019 IEEE International Symposium on Workload Characterization (IISWC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Deep Learning Language Modeling Workloads: Where Time Goes on Graphics Processors\",\"authors\":\"Ali Hadi Zadeh, Zissis Poulos, Andreas Moshovos\",\"doi\":\"10.1109/IISWC47752.2019.9041972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Language Modeling is at the core of many natural language processing tasks. We analyze two such recent models: a Gated Convolutional Network (GCN) with five layers on the Wikitext-2 dataset and a Transformer network with 24 layers on the Google Billion Word dataset. We find that when executed on modern graphics processors, 30% - 40% of the execution time is due to the final adaptive softmax layer. Analytical modeling of the computation and memory demands of the GCN shows that this behavior will persist even if the hidden state is increased - which could be needed to improve accuracy or to support a wider vocabulary. We present variations of the adaptive softmax layer that reduce execution time for the layer by 40% and that scale better with the hidden state.\",\"PeriodicalId\":121068,\"journal\":{\"name\":\"2019 IEEE International Symposium on Workload Characterization (IISWC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Workload Characterization (IISWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISWC47752.2019.9041972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Workload Characterization (IISWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC47752.2019.9041972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

语言建模是许多自然语言处理任务的核心。我们分析了两个这样的最新模型:Wikitext-2数据集上具有五层的门控卷积网络(GCN)和Google十亿字数据集上具有24层的Transformer网络。我们发现,当在现代图形处理器上执行时,30% - 40%的执行时间是由于最后的自适应softmax层。对GCN的计算和内存需求的分析建模表明,即使隐藏状态增加,这种行为也会持续存在——这可能需要提高准确性或支持更广泛的词汇表。我们提出了自适应softmax层的变体,它将层的执行时间减少了40%,并且随着隐藏状态的变化可以更好地扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Language Modeling Workloads: Where Time Goes on Graphics Processors
Language Modeling is at the core of many natural language processing tasks. We analyze two such recent models: a Gated Convolutional Network (GCN) with five layers on the Wikitext-2 dataset and a Transformer network with 24 layers on the Google Billion Word dataset. We find that when executed on modern graphics processors, 30% - 40% of the execution time is due to the final adaptive softmax layer. Analytical modeling of the computation and memory demands of the GCN shows that this behavior will persist even if the hidden state is increased - which could be needed to improve accuracy or to support a wider vocabulary. We present variations of the adaptive softmax layer that reduce execution time for the layer by 40% and that scale better with the hidden state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信