{"title":"具有负边权的平行最短路径","authors":"Nairen Cao, Jeremy T. Fineman, Katina Russell","doi":"10.1145/3490148.3538583","DOIUrl":null,"url":null,"abstract":"This paper presents a parallel version of Goldberg's algorithm for the problem of single-source shortest paths with integer (including negatives) edge weights. Given an input graph with n vertices, m edges, and integer weights ≥-N, our algorithms solves the problem with Õ(m √n log N) work and n5/4+o(1) log N span, both with high probability. Our algorithm thus has work similar to Goldberg's algorithm while also achieving at least m1/4-o(1) parallelism. To generate our parallel version of Goldberg's algorithm, we solve two specific distance-limited shortest-path problems, both with work Õ(m) and span √L · n1/2+o(1), where L is the distance limit.","PeriodicalId":112865,"journal":{"name":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel Shortest Paths with Negative Edge Weights\",\"authors\":\"Nairen Cao, Jeremy T. Fineman, Katina Russell\",\"doi\":\"10.1145/3490148.3538583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a parallel version of Goldberg's algorithm for the problem of single-source shortest paths with integer (including negatives) edge weights. Given an input graph with n vertices, m edges, and integer weights ≥-N, our algorithms solves the problem with Õ(m √n log N) work and n5/4+o(1) log N span, both with high probability. Our algorithm thus has work similar to Goldberg's algorithm while also achieving at least m1/4-o(1) parallelism. To generate our parallel version of Goldberg's algorithm, we solve two specific distance-limited shortest-path problems, both with work Õ(m) and span √L · n1/2+o(1), where L is the distance limit.\",\"PeriodicalId\":112865,\"journal\":{\"name\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3490148.3538583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490148.3538583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel Shortest Paths with Negative Edge Weights
This paper presents a parallel version of Goldberg's algorithm for the problem of single-source shortest paths with integer (including negatives) edge weights. Given an input graph with n vertices, m edges, and integer weights ≥-N, our algorithms solves the problem with Õ(m √n log N) work and n5/4+o(1) log N span, both with high probability. Our algorithm thus has work similar to Goldberg's algorithm while also achieving at least m1/4-o(1) parallelism. To generate our parallel version of Goldberg's algorithm, we solve two specific distance-limited shortest-path problems, both with work Õ(m) and span √L · n1/2+o(1), where L is the distance limit.