基于约束特征的心脏PET运动估计方法

Jizhe Wang, Tao Feng, Jingyan Xu, B. Tsui
{"title":"基于约束特征的心脏PET运动估计方法","authors":"Jizhe Wang, Tao Feng, Jingyan Xu, B. Tsui","doi":"10.1109/NSSMIC.2016.8069431","DOIUrl":null,"url":null,"abstract":"The goal is to develop and evaluate a new constrained feature-based cardiac motion estimation (ME) method for cardiac gated (CG) myocardial perfusion (MP) PET images to improve the accuracy of the estimated cardiac motion vector field (MVF). CG-MP PET projection data were generated from the 4D XCAT phantom with realistic anatomical structures and cardiac MVF models, and reconstructed using the STIR simulation and reconstruction software. The interventricular sulcus (IS) was extracted from each CG-MP PET image by applying B-spline extrapolation and interpolation methods to the extracted edges of the left (LV) and right ventricular (RV) walls. The estimated MVFs of the extracted ISs were calculated between adjacent CG frames. In the previously feature-based cardiac ME algorithm, the estimated IS MVF was used as an initial estimate in the conventional optical-flow ME algorithm. The information was found to reduce the aperture problem effect and provide more accurate cardiac MVF estimate as compared to without the information, using the cardiac MVF of the XCAT as the truth. In the new algorithm, it was used as an additional constraint to restrict the range of the search for the cardiac MVF estimate. The new approach was evaluated in terms of accuracy of the estimated cardiac MVF and compared with those using the previous methods. The evaluation results showed the estimated cardiac MVF obtained from using the IS as an initial estimate (S-initial) was more accurate than that using no initial estimate (0-initial) and was comparable to that using the truth MVF as the initial estimate (T-initial). The estimation accuracy was further improved with the S-initial and the IS motion as an additional constraint. In conclusion, we developed and evaluated a new constrained feature-based cardiac ME method for cardiac PET. We demonstrated the new method provided more accurate estimation of the cardiac MVF as compared to the conventional and a previously developed feature-based cardiac ME method for CG-MP PET.","PeriodicalId":184587,"journal":{"name":"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A constrained feature-based cardiac motion estimation method for cardiac PET\",\"authors\":\"Jizhe Wang, Tao Feng, Jingyan Xu, B. Tsui\",\"doi\":\"10.1109/NSSMIC.2016.8069431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal is to develop and evaluate a new constrained feature-based cardiac motion estimation (ME) method for cardiac gated (CG) myocardial perfusion (MP) PET images to improve the accuracy of the estimated cardiac motion vector field (MVF). CG-MP PET projection data were generated from the 4D XCAT phantom with realistic anatomical structures and cardiac MVF models, and reconstructed using the STIR simulation and reconstruction software. The interventricular sulcus (IS) was extracted from each CG-MP PET image by applying B-spline extrapolation and interpolation methods to the extracted edges of the left (LV) and right ventricular (RV) walls. The estimated MVFs of the extracted ISs were calculated between adjacent CG frames. In the previously feature-based cardiac ME algorithm, the estimated IS MVF was used as an initial estimate in the conventional optical-flow ME algorithm. The information was found to reduce the aperture problem effect and provide more accurate cardiac MVF estimate as compared to without the information, using the cardiac MVF of the XCAT as the truth. In the new algorithm, it was used as an additional constraint to restrict the range of the search for the cardiac MVF estimate. The new approach was evaluated in terms of accuracy of the estimated cardiac MVF and compared with those using the previous methods. The evaluation results showed the estimated cardiac MVF obtained from using the IS as an initial estimate (S-initial) was more accurate than that using no initial estimate (0-initial) and was comparable to that using the truth MVF as the initial estimate (T-initial). The estimation accuracy was further improved with the S-initial and the IS motion as an additional constraint. In conclusion, we developed and evaluated a new constrained feature-based cardiac ME method for cardiac PET. We demonstrated the new method provided more accurate estimation of the cardiac MVF as compared to the conventional and a previously developed feature-based cardiac ME method for CG-MP PET.\",\"PeriodicalId\":184587,\"journal\":{\"name\":\"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2016.8069431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2016.8069431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目的是开发和评估一种新的基于约束特征的心脏运动估计(ME)方法,用于心脏门控(CG)心肌灌注(MP) PET图像,以提高估计的心脏运动矢量场(MVF)的准确性。CG-MP PET投影数据由具有逼真解剖结构和心脏MVF模型的4D XCAT幻像生成,并使用STIR模拟重建软件进行重建。采用b样条外推法和插值法对提取的左、右心室壁边缘提取心室间沟(IS)。在相邻的CG帧之间计算提取的ISs的估计MVFs。在先前的基于特征的心脏ME算法中,估计的IS MVF被用作传统光流ME算法的初始估计。使用XCAT的心脏MVF作为真实值,与没有信息相比,发现该信息可以减少孔径问题的影响,并提供更准确的心脏MVF估计。在新算法中,它被用作附加约束来限制心脏MVF估计的搜索范围。新方法在估计心脏MVF的准确性方面进行了评估,并与使用先前方法的方法进行了比较。评估结果显示,使用IS作为初始估计值(S-initial)获得的心脏MVF估计值比不使用初始估计值(0-initial)更准确,与使用真值MVF作为初始估计值(T-initial)相当。利用s初始和IS运动作为附加约束,进一步提高了估计精度。总之,我们开发并评估了一种新的基于约束特征的心脏ME方法用于心脏PET。我们证明,与传统的和先前开发的基于特征的心肌ME方法相比,新方法可以更准确地估计心脏MVF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A constrained feature-based cardiac motion estimation method for cardiac PET
The goal is to develop and evaluate a new constrained feature-based cardiac motion estimation (ME) method for cardiac gated (CG) myocardial perfusion (MP) PET images to improve the accuracy of the estimated cardiac motion vector field (MVF). CG-MP PET projection data were generated from the 4D XCAT phantom with realistic anatomical structures and cardiac MVF models, and reconstructed using the STIR simulation and reconstruction software. The interventricular sulcus (IS) was extracted from each CG-MP PET image by applying B-spline extrapolation and interpolation methods to the extracted edges of the left (LV) and right ventricular (RV) walls. The estimated MVFs of the extracted ISs were calculated between adjacent CG frames. In the previously feature-based cardiac ME algorithm, the estimated IS MVF was used as an initial estimate in the conventional optical-flow ME algorithm. The information was found to reduce the aperture problem effect and provide more accurate cardiac MVF estimate as compared to without the information, using the cardiac MVF of the XCAT as the truth. In the new algorithm, it was used as an additional constraint to restrict the range of the search for the cardiac MVF estimate. The new approach was evaluated in terms of accuracy of the estimated cardiac MVF and compared with those using the previous methods. The evaluation results showed the estimated cardiac MVF obtained from using the IS as an initial estimate (S-initial) was more accurate than that using no initial estimate (0-initial) and was comparable to that using the truth MVF as the initial estimate (T-initial). The estimation accuracy was further improved with the S-initial and the IS motion as an additional constraint. In conclusion, we developed and evaluated a new constrained feature-based cardiac ME method for cardiac PET. We demonstrated the new method provided more accurate estimation of the cardiac MVF as compared to the conventional and a previously developed feature-based cardiac ME method for CG-MP PET.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信