Lei Sun, Badong Chen, Jie Yang, Ronghua Zhou, Qing Nie, Aihua Wang
{"title":"基于字典的鲁棒自适应滤波生存误差补偿","authors":"Lei Sun, Badong Chen, Jie Yang, Ronghua Zhou, Qing Nie, Aihua Wang","doi":"10.1109/IJCNN.2016.7727363","DOIUrl":null,"url":null,"abstract":"Survival information potential (SIP) is defined by the survival distribution function instead of the probability density function (PDF) of a random variable. SIP can be used as a risk function equipped with learning error compensation ability while this SIP based risk function does not involve the estimation of PDF. This is desirable for a robust learning application in view of the error compensation ability. The learning error compensation scheme provided by SIP requires rank information of learning errors. The accuracy of error compensation desires a large number of input data but is computationally expensive. It is shown that the error compensation can be approximated by an error-related distribution. Based on this approximation, a dictionary based error compensation scheme is proposed to obtain a fixed-budget recursive online learning method. This proposed method is compared with several well-known online learning methods including least-mean-square method, least absolute deviation method, affine projection algorithm, recursive least-mean-square method, and sliding window based SIP method. Simulation results validate the outstanding smooth and consistent convergence performance of the proposed method particularly in α-stable-noise environments.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dictionary based survival error compensation for robust adaptive filtering\",\"authors\":\"Lei Sun, Badong Chen, Jie Yang, Ronghua Zhou, Qing Nie, Aihua Wang\",\"doi\":\"10.1109/IJCNN.2016.7727363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Survival information potential (SIP) is defined by the survival distribution function instead of the probability density function (PDF) of a random variable. SIP can be used as a risk function equipped with learning error compensation ability while this SIP based risk function does not involve the estimation of PDF. This is desirable for a robust learning application in view of the error compensation ability. The learning error compensation scheme provided by SIP requires rank information of learning errors. The accuracy of error compensation desires a large number of input data but is computationally expensive. It is shown that the error compensation can be approximated by an error-related distribution. Based on this approximation, a dictionary based error compensation scheme is proposed to obtain a fixed-budget recursive online learning method. This proposed method is compared with several well-known online learning methods including least-mean-square method, least absolute deviation method, affine projection algorithm, recursive least-mean-square method, and sliding window based SIP method. Simulation results validate the outstanding smooth and consistent convergence performance of the proposed method particularly in α-stable-noise environments.\",\"PeriodicalId\":109405,\"journal\":{\"name\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2016.7727363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A dictionary based survival error compensation for robust adaptive filtering
Survival information potential (SIP) is defined by the survival distribution function instead of the probability density function (PDF) of a random variable. SIP can be used as a risk function equipped with learning error compensation ability while this SIP based risk function does not involve the estimation of PDF. This is desirable for a robust learning application in view of the error compensation ability. The learning error compensation scheme provided by SIP requires rank information of learning errors. The accuracy of error compensation desires a large number of input data but is computationally expensive. It is shown that the error compensation can be approximated by an error-related distribution. Based on this approximation, a dictionary based error compensation scheme is proposed to obtain a fixed-budget recursive online learning method. This proposed method is compared with several well-known online learning methods including least-mean-square method, least absolute deviation method, affine projection algorithm, recursive least-mean-square method, and sliding window based SIP method. Simulation results validate the outstanding smooth and consistent convergence performance of the proposed method particularly in α-stable-noise environments.