基于模糊Kohonen聚类网络的特征保持滤波器在脉冲噪声检测中的应用

K. Singh, P. Bora, A. Mahanta
{"title":"基于模糊Kohonen聚类网络的特征保持滤波器在脉冲噪声检测中的应用","authors":"K. Singh, P. Bora, A. Mahanta","doi":"10.1109/TENCON.2001.949627","DOIUrl":null,"url":null,"abstract":"It is always advisable to apply filtering only on corrupted pixels of images leaving untouched the uncorrupted ones to preserve image features and to avoid blurring effects. We present an algorithm which can detect the corrupted pixels in texture images. It uses a fuzzy Kohonen clustering network that integrates with the fuzzy c-means (FCM) model utilizing the updating strategies of the first and the learning rate of the second.","PeriodicalId":358168,"journal":{"name":"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Features preserving filters using fuzzy Kohonen clustering network in detection of impulse noise\",\"authors\":\"K. Singh, P. Bora, A. Mahanta\",\"doi\":\"10.1109/TENCON.2001.949627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is always advisable to apply filtering only on corrupted pixels of images leaving untouched the uncorrupted ones to preserve image features and to avoid blurring effects. We present an algorithm which can detect the corrupted pixels in texture images. It uses a fuzzy Kohonen clustering network that integrates with the fuzzy c-means (FCM) model utilizing the updating strategies of the first and the learning rate of the second.\",\"PeriodicalId\":358168,\"journal\":{\"name\":\"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2001.949627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2001.949627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

建议只对损坏的图像像素进行过滤,而不触及未损坏的像素,以保留图像特征并避免模糊效果。提出了一种检测纹理图像中损坏像素的算法。它采用模糊Kohonen聚类网络,该网络结合模糊c均值(FCM)模型,利用前者的更新策略和后者的学习率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Features preserving filters using fuzzy Kohonen clustering network in detection of impulse noise
It is always advisable to apply filtering only on corrupted pixels of images leaving untouched the uncorrupted ones to preserve image features and to avoid blurring effects. We present an algorithm which can detect the corrupted pixels in texture images. It uses a fuzzy Kohonen clustering network that integrates with the fuzzy c-means (FCM) model utilizing the updating strategies of the first and the learning rate of the second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信