{"title":"基于l -评论矩阵的投资组合风险价值估计与检验","authors":"Wei‐han Liu","doi":"10.2139/ssrn.1460771","DOIUrl":null,"url":null,"abstract":"This study employs L‐comoments introduced by Serfling and Xiao (2007) into portfolio Value‐at‐Risk estimation through two models: the Cornish–Fisher expansion (Draper, N. R. & Tierney, D. E., 1973) and modified VaR (Zangari, P., 1996). Backtesting outcomes indicate that modified VaR outperforms and L‐comoments give better estimates of portfolio skewness and excess kurtosis than do classical central moments in modeling heavy‐tailed distributions. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:897–908, 2010","PeriodicalId":351504,"journal":{"name":"Risk and Insurance/Measures and Control","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Estimation and Testing of Portfolio Value-at-Risk Based on L-Comoment Matrices\",\"authors\":\"Wei‐han Liu\",\"doi\":\"10.2139/ssrn.1460771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study employs L‐comoments introduced by Serfling and Xiao (2007) into portfolio Value‐at‐Risk estimation through two models: the Cornish–Fisher expansion (Draper, N. R. & Tierney, D. E., 1973) and modified VaR (Zangari, P., 1996). Backtesting outcomes indicate that modified VaR outperforms and L‐comoments give better estimates of portfolio skewness and excess kurtosis than do classical central moments in modeling heavy‐tailed distributions. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:897–908, 2010\",\"PeriodicalId\":351504,\"journal\":{\"name\":\"Risk and Insurance/Measures and Control\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk and Insurance/Measures and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1460771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk and Insurance/Measures and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1460771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Estimation and Testing of Portfolio Value-at-Risk Based on L-Comoment Matrices
This study employs L‐comoments introduced by Serfling and Xiao (2007) into portfolio Value‐at‐Risk estimation through two models: the Cornish–Fisher expansion (Draper, N. R. & Tierney, D. E., 1973) and modified VaR (Zangari, P., 1996). Backtesting outcomes indicate that modified VaR outperforms and L‐comoments give better estimates of portfolio skewness and excess kurtosis than do classical central moments in modeling heavy‐tailed distributions. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 30:897–908, 2010