模拟虚拟电厂运行可能性的不同情景

T. Dragičević, D. Skrlec, M. Delimar
{"title":"模拟虚拟电厂运行可能性的不同情景","authors":"T. Dragičević, D. Skrlec, M. Delimar","doi":"10.1109/MELCON.2010.5476233","DOIUrl":null,"url":null,"abstract":"This paper compares various models of steering strategies for a portfolio of Distributed Energy Resources (DER). Virtual Power Plant (VPP) is a flexible representation of such a portfolio, and one of its key assignments is to guide each DER in order to dispatch desirable active power. Portfolio includes two controllable synchronous generators (CHP), two wind turbines, ten photovoltaic plants and a fuel cell turbine. Stochastic nature of load demand and output power from renewable energy resources is taken into account. An algorithm was developed, based upon active power requests for VPP, weather conditions and expected consumer loading, which optimizes dispatch of controllable generators in order to track the production of intermittent sources and in that way make VPP wanted output. Simulations were carried out on a real distribution network (Sopot, part of Zagreb) through one usual consumption day comparing three scenarios of VPP controllability and investigating the best scenario either for the Distribution System Operator (DSO), either for VPP. Results demonstrate that the algorithm is able to efficiently control the portfolio and, based upon the primary requirements for VPP, either to maximize reduction of total losses in the distribution network, to cut off the peak demand from external grid, or to produce constant power through whole day.","PeriodicalId":256057,"journal":{"name":"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Modelling different scenarios of Virtual Power Plant operating possibilities\",\"authors\":\"T. Dragičević, D. Skrlec, M. Delimar\",\"doi\":\"10.1109/MELCON.2010.5476233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares various models of steering strategies for a portfolio of Distributed Energy Resources (DER). Virtual Power Plant (VPP) is a flexible representation of such a portfolio, and one of its key assignments is to guide each DER in order to dispatch desirable active power. Portfolio includes two controllable synchronous generators (CHP), two wind turbines, ten photovoltaic plants and a fuel cell turbine. Stochastic nature of load demand and output power from renewable energy resources is taken into account. An algorithm was developed, based upon active power requests for VPP, weather conditions and expected consumer loading, which optimizes dispatch of controllable generators in order to track the production of intermittent sources and in that way make VPP wanted output. Simulations were carried out on a real distribution network (Sopot, part of Zagreb) through one usual consumption day comparing three scenarios of VPP controllability and investigating the best scenario either for the Distribution System Operator (DSO), either for VPP. Results demonstrate that the algorithm is able to efficiently control the portfolio and, based upon the primary requirements for VPP, either to maximize reduction of total losses in the distribution network, to cut off the peak demand from external grid, or to produce constant power through whole day.\",\"PeriodicalId\":256057,\"journal\":{\"name\":\"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELCON.2010.5476233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2010.5476233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文比较了分布式能源投资组合的各种转向策略模型。虚拟电厂(VPP)是这种组合的灵活表现,其关键任务之一是引导每个DER以调度理想的有功功率。投资组合包括两个可控同步发电机(CHP),两个风力涡轮机,十个光伏发电厂和一个燃料电池涡轮机。考虑了负荷需求和可再生能源输出功率的随机性。基于VPP的有功功率需求、天气条件和预期用户负荷,开发了一种算法,优化了可控发电机的调度,以跟踪间歇源的生产,从而使VPP需要输出。在一个真实的配电网(萨格勒布的Sopot)上进行了模拟,通过一个通常的消费日,比较了VPP可控性的三种方案,并调查了分配系统运营商(DSO)和VPP的最佳方案。结果表明,该算法能够有效地控制组合,并根据VPP的基本要求,最大限度地降低配电网的总损耗,切断外部电网的高峰需求,或全天发电不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling different scenarios of Virtual Power Plant operating possibilities
This paper compares various models of steering strategies for a portfolio of Distributed Energy Resources (DER). Virtual Power Plant (VPP) is a flexible representation of such a portfolio, and one of its key assignments is to guide each DER in order to dispatch desirable active power. Portfolio includes two controllable synchronous generators (CHP), two wind turbines, ten photovoltaic plants and a fuel cell turbine. Stochastic nature of load demand and output power from renewable energy resources is taken into account. An algorithm was developed, based upon active power requests for VPP, weather conditions and expected consumer loading, which optimizes dispatch of controllable generators in order to track the production of intermittent sources and in that way make VPP wanted output. Simulations were carried out on a real distribution network (Sopot, part of Zagreb) through one usual consumption day comparing three scenarios of VPP controllability and investigating the best scenario either for the Distribution System Operator (DSO), either for VPP. Results demonstrate that the algorithm is able to efficiently control the portfolio and, based upon the primary requirements for VPP, either to maximize reduction of total losses in the distribution network, to cut off the peak demand from external grid, or to produce constant power through whole day.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信