基于线性分数阶变换(LFT)的互连参数不确定性模型

Janet Roveda, O. Hafiz, Jun Yu Li
{"title":"基于线性分数阶变换(LFT)的互连参数不确定性模型","authors":"Janet Roveda, O. Hafiz, Jun Yu Li","doi":"10.1145/996566.996674","DOIUrl":null,"url":null,"abstract":"As we scale toward nanometer technologies, the increase in interconnect parameter variations will bring significant performance variability. New design methodologies will emerge to facilitate construction of reliable systems from unreliable nanometer scale components. Such methodologies require new performance models which accurately capture the manufacturing realities. In this paper, we present a Linear Fractional Transform (LFT) based model for interconnect Parametric Uncertainty. This new model formulates the interconnect parameter uncertainty as a repeated scalar uncertainty structure. With the help of generalized Balanced Truncation Realization (BTR) based on Linear Matrix Inequalities (LMI's), the new model reduces the order of the original interconnect network while preserves the stability. This paper also shows that the LFT based model even guarantees passivity if the BTR reduction is based on solutions to a pair of Linear Matrix Inequalities (LMI's) which generalizes Lur'e equations.","PeriodicalId":115059,"journal":{"name":"Proceedings. 41st Design Automation Conference, 2004.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A linear fractional transform (LFT) based model for interconnect parametric uncertainty\",\"authors\":\"Janet Roveda, O. Hafiz, Jun Yu Li\",\"doi\":\"10.1145/996566.996674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As we scale toward nanometer technologies, the increase in interconnect parameter variations will bring significant performance variability. New design methodologies will emerge to facilitate construction of reliable systems from unreliable nanometer scale components. Such methodologies require new performance models which accurately capture the manufacturing realities. In this paper, we present a Linear Fractional Transform (LFT) based model for interconnect Parametric Uncertainty. This new model formulates the interconnect parameter uncertainty as a repeated scalar uncertainty structure. With the help of generalized Balanced Truncation Realization (BTR) based on Linear Matrix Inequalities (LMI's), the new model reduces the order of the original interconnect network while preserves the stability. This paper also shows that the LFT based model even guarantees passivity if the BTR reduction is based on solutions to a pair of Linear Matrix Inequalities (LMI's) which generalizes Lur'e equations.\",\"PeriodicalId\":115059,\"journal\":{\"name\":\"Proceedings. 41st Design Automation Conference, 2004.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 41st Design Automation Conference, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/996566.996674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 41st Design Automation Conference, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/996566.996674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

随着我们向纳米技术扩展,互连参数变化的增加将带来显著的性能变化。新的设计方法将会出现,以促进从不可靠的纳米级组件构建可靠的系统。这种方法需要新的性能模型来准确地捕捉制造现实。本文提出了一种基于线性分数变换(LFT)的互连参数不确定性模型。该模型将互连参数的不确定性表述为一个重复的标量不确定性结构。利用基于线性矩阵不等式(LMI’s)的广义平衡截断实现(BTR),在保持原有互联网络稳定性的同时降低了原有互联网络的阶数。本文还证明了基于LFT的模型甚至可以保证无源性,如果BTR约简是基于推广Lur’e方程的一对线性矩阵不等式(LMI’s)的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A linear fractional transform (LFT) based model for interconnect parametric uncertainty
As we scale toward nanometer technologies, the increase in interconnect parameter variations will bring significant performance variability. New design methodologies will emerge to facilitate construction of reliable systems from unreliable nanometer scale components. Such methodologies require new performance models which accurately capture the manufacturing realities. In this paper, we present a Linear Fractional Transform (LFT) based model for interconnect Parametric Uncertainty. This new model formulates the interconnect parameter uncertainty as a repeated scalar uncertainty structure. With the help of generalized Balanced Truncation Realization (BTR) based on Linear Matrix Inequalities (LMI's), the new model reduces the order of the original interconnect network while preserves the stability. This paper also shows that the LFT based model even guarantees passivity if the BTR reduction is based on solutions to a pair of Linear Matrix Inequalities (LMI's) which generalizes Lur'e equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信