{"title":"一个快速和强大的文本识别器","authors":"Siyang Qin, R. Manduchi","doi":"10.1109/WACV.2016.7477663","DOIUrl":null,"url":null,"abstract":"We introduce an algorithm for text detection and localization (\"spotting\") that is computationally efficient and produces state-of-the-art results. Our system uses multi-channel MSERs to detect a large number of promising regions, then subsamples these regions using a clustering approach. Representatives of region clusters are binarized and then passed on to a deep network. A final line grouping stage forms word-level segments. On the ICDAR 2011 and 2015 benchmarks, our algorithm obtains an F-score of 82% and 83%, respectively, at a computational cost of 1.2 seconds per frame. We also introduce a version that is three times as fast, with only a slight reduction in performance.","PeriodicalId":124363,"journal":{"name":"2016 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A fast and robust text spotter\",\"authors\":\"Siyang Qin, R. Manduchi\",\"doi\":\"10.1109/WACV.2016.7477663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an algorithm for text detection and localization (\\\"spotting\\\") that is computationally efficient and produces state-of-the-art results. Our system uses multi-channel MSERs to detect a large number of promising regions, then subsamples these regions using a clustering approach. Representatives of region clusters are binarized and then passed on to a deep network. A final line grouping stage forms word-level segments. On the ICDAR 2011 and 2015 benchmarks, our algorithm obtains an F-score of 82% and 83%, respectively, at a computational cost of 1.2 seconds per frame. We also introduce a version that is three times as fast, with only a slight reduction in performance.\",\"PeriodicalId\":124363,\"journal\":{\"name\":\"2016 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2016.7477663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2016.7477663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce an algorithm for text detection and localization ("spotting") that is computationally efficient and produces state-of-the-art results. Our system uses multi-channel MSERs to detect a large number of promising regions, then subsamples these regions using a clustering approach. Representatives of region clusters are binarized and then passed on to a deep network. A final line grouping stage forms word-level segments. On the ICDAR 2011 and 2015 benchmarks, our algorithm obtains an F-score of 82% and 83%, respectively, at a computational cost of 1.2 seconds per frame. We also introduce a version that is three times as fast, with only a slight reduction in performance.