一种有效的基于Web内容的SIFT特征图像检索算法

Zhuozheng Wang, Ke-bin Jia, Pengyu Liu
{"title":"一种有效的基于Web内容的SIFT特征图像检索算法","authors":"Zhuozheng Wang, Ke-bin Jia, Pengyu Liu","doi":"10.1109/WCSE.2009.420","DOIUrl":null,"url":null,"abstract":"This paper provides an effective web content-based image retrieval algorithm by using SIFT (Scale Invariant Feature Transform) feature. Different from other existing text-based web image search engines, this algorithm can be applied to content-based web image search engine effectively. SIFT descriptors, which are invariant to image scaling and transformation and rotation, and partially invariant to illumination changes and affine, present the local features of an image. Therefore, feature keypoints saved as XML files can be extracted more accurately by using SIFT than by color, texture, shape and spatial relations feature. To decrease unavailable features matching, a dynamic probability function replaces the original fixed value to determine the similarity distance of ROI (Region of interest) and database from web training images. The experimental results show that this method improves the stability and precision of image retrieval.","PeriodicalId":331155,"journal":{"name":"2009 WRI World Congress on Software Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Effective Web Content-Based Image Retrieval Algorithm by Using SIFT Feature\",\"authors\":\"Zhuozheng Wang, Ke-bin Jia, Pengyu Liu\",\"doi\":\"10.1109/WCSE.2009.420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides an effective web content-based image retrieval algorithm by using SIFT (Scale Invariant Feature Transform) feature. Different from other existing text-based web image search engines, this algorithm can be applied to content-based web image search engine effectively. SIFT descriptors, which are invariant to image scaling and transformation and rotation, and partially invariant to illumination changes and affine, present the local features of an image. Therefore, feature keypoints saved as XML files can be extracted more accurately by using SIFT than by color, texture, shape and spatial relations feature. To decrease unavailable features matching, a dynamic probability function replaces the original fixed value to determine the similarity distance of ROI (Region of interest) and database from web training images. The experimental results show that this method improves the stability and precision of image retrieval.\",\"PeriodicalId\":331155,\"journal\":{\"name\":\"2009 WRI World Congress on Software Engineering\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 WRI World Congress on Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSE.2009.420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 WRI World Congress on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSE.2009.420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文利用SIFT (Scale Invariant Feature Transform)特征,提出了一种有效的基于web内容的图像检索算法。与现有的其他基于文本的web图像搜索引擎不同,该算法可以有效地应用于基于内容的web图像搜索引擎。SIFT描述子不受图像缩放、变换和旋转的影响,部分不受光照变化和仿射的影响,呈现图像的局部特征。因此,与使用颜色、纹理、形状和空间关系特征相比,使用SIFT可以更准确地提取保存为XML文件的特征关键点。为了减少不可用的特征匹配,用一个动态概率函数代替原来的固定值来确定web训练图像中感兴趣区域与数据库的相似距离。实验结果表明,该方法提高了图像检索的稳定性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Effective Web Content-Based Image Retrieval Algorithm by Using SIFT Feature
This paper provides an effective web content-based image retrieval algorithm by using SIFT (Scale Invariant Feature Transform) feature. Different from other existing text-based web image search engines, this algorithm can be applied to content-based web image search engine effectively. SIFT descriptors, which are invariant to image scaling and transformation and rotation, and partially invariant to illumination changes and affine, present the local features of an image. Therefore, feature keypoints saved as XML files can be extracted more accurately by using SIFT than by color, texture, shape and spatial relations feature. To decrease unavailable features matching, a dynamic probability function replaces the original fixed value to determine the similarity distance of ROI (Region of interest) and database from web training images. The experimental results show that this method improves the stability and precision of image retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信