Eldan的随机局部化和KLS超平面猜想:一种改进的扩展下界

Y. Lee, S. Vempala
{"title":"Eldan的随机局部化和KLS超平面猜想:一种改进的扩展下界","authors":"Y. Lee, S. Vempala","doi":"10.1109/FOCS.2017.96","DOIUrl":null,"url":null,"abstract":"We show that the KLS constant for n-dimensional isotropic logconcavemeasures is O(n^{1/4}), improving on the current best bound ofO(n^{1/3}√{\\log n}). As corollaries we obtain the same improvedbound on the thin-shell estimate, Poincar\\e constant and Lipschitzconcentration constant and an alternative proof of this bound forthe isotropic constant; it also follows that the ball walk for samplingfrom an isotropic logconcave density in \\R^{n} converges in O^{*}(n^{2.5})steps from a warm start.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"Eldan's Stochastic Localization and the KLS Hyperplane Conjecture: An Improved Lower Bound for Expansion\",\"authors\":\"Y. Lee, S. Vempala\",\"doi\":\"10.1109/FOCS.2017.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the KLS constant for n-dimensional isotropic logconcavemeasures is O(n^{1/4}), improving on the current best bound ofO(n^{1/3}√{\\\\log n}). As corollaries we obtain the same improvedbound on the thin-shell estimate, Poincar\\\\e constant and Lipschitzconcentration constant and an alternative proof of this bound forthe isotropic constant; it also follows that the ball walk for samplingfrom an isotropic logconcave density in \\\\R^{n} converges in O^{*}(n^{2.5})steps from a warm start.\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

摘要

我们证明了n维各向同性对数凹测量的KLS常数为O(n^{1/4}),改进了当前的最佳界O(n^{1/3}√{\log n})。作为推论,我们得到了薄壳估计的改进界、庞加莱常数和lipschitz浓度常数以及各向同性常数的改进界的另一种证明;也可以得出,从\R^{n}的各向同性对数凹密度中采样的球行走从温暖开始在O^{*}(n^{2.5})步内收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eldan's Stochastic Localization and the KLS Hyperplane Conjecture: An Improved Lower Bound for Expansion
We show that the KLS constant for n-dimensional isotropic logconcavemeasures is O(n^{1/4}), improving on the current best bound ofO(n^{1/3}√{\log n}). As corollaries we obtain the same improvedbound on the thin-shell estimate, Poincar\e constant and Lipschitzconcentration constant and an alternative proof of this bound forthe isotropic constant; it also follows that the ball walk for samplingfrom an isotropic logconcave density in \R^{n} converges in O^{*}(n^{2.5})steps from a warm start.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信