LDPC码迭代分析中高斯假设的准确性

Kai Xie, Jing Li
{"title":"LDPC码迭代分析中高斯假设的准确性","authors":"Kai Xie, Jing Li","doi":"10.1109/ISIT.2006.262018","DOIUrl":null,"url":null,"abstract":"Iterative analysis for low-density parity-check (LDPC) codes uses the prevailing assumption that messages exchanged between the variable nodes and the check nodes follow a Gaussian distribution. However, the justification is largely pragmatic rather than being based on any rigorous theory. This paper provides a theoretic support by investigating when and how well the Gaussian distribution approximates the real message density and the far subtler why. The analytical results are verified by extensive simulations","PeriodicalId":115298,"journal":{"name":"2006 IEEE International Symposium on Information Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On Accuracy of Gaussian Assumption in Iterative Analysis for LDPC Codes\",\"authors\":\"Kai Xie, Jing Li\",\"doi\":\"10.1109/ISIT.2006.262018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iterative analysis for low-density parity-check (LDPC) codes uses the prevailing assumption that messages exchanged between the variable nodes and the check nodes follow a Gaussian distribution. However, the justification is largely pragmatic rather than being based on any rigorous theory. This paper provides a theoretic support by investigating when and how well the Gaussian distribution approximates the real message density and the far subtler why. The analytical results are verified by extensive simulations\",\"PeriodicalId\":115298,\"journal\":{\"name\":\"2006 IEEE International Symposium on Information Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2006.262018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2006.262018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

低密度奇偶校验(LDPC)码的迭代分析使用流行的假设,即变量节点和校验节点之间交换的消息遵循高斯分布。然而,这种理由在很大程度上是实用主义的,而不是基于任何严格的理论。本文通过研究高斯分布何时以及如何很好地接近真实消息密度以及更微妙的原因提供了理论支持。通过大量的仿真验证了分析结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Accuracy of Gaussian Assumption in Iterative Analysis for LDPC Codes
Iterative analysis for low-density parity-check (LDPC) codes uses the prevailing assumption that messages exchanged between the variable nodes and the check nodes follow a Gaussian distribution. However, the justification is largely pragmatic rather than being based on any rigorous theory. This paper provides a theoretic support by investigating when and how well the Gaussian distribution approximates the real message density and the far subtler why. The analytical results are verified by extensive simulations
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信