{"title":"不使用数字识别的机器学习车牌检测","authors":"K. Ohzeki, Max Geigis, Stefan Schneider","doi":"10.15439/2019F121","DOIUrl":null,"url":null,"abstract":"In autonomous driving, detecting vehicles together with their parts, such as a license plate is important. Many methods with using deep learning detect the license plate based on number recognition. However, there is an idea that the method using deep learning is difficult to use for autonomous driving because of the complexity in realizing deterministic verification. Therefore, development of a method that does not use deep learning(DL) has become important again. Although the authors have made the world’s best performance in 2018 for Caltech data with using DL, this concept has now turned to another research without using DL. The CT5L method is the latest type, that includes techniques of the continuity of vertical and horizontal black-and-white pixel values inside the plate, unique Hough transform, only vertical and horizontal lines are detected, the top five in the order of the number of votes to ensure good performance. In this paper, a method to determine the threshold value for binarizing input by machine learning is proposed, and good results are obtained. The detection rate is improved by about 20 points in percent as compared to the fixed case. It achieves the best performance among the conventional fixed threshold method, Otsu’s method, and the conventional method of JavaANPR.","PeriodicalId":168208,"journal":{"name":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"License Plate Detection with Machine Learning Without Using Number Recognition\",\"authors\":\"K. Ohzeki, Max Geigis, Stefan Schneider\",\"doi\":\"10.15439/2019F121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In autonomous driving, detecting vehicles together with their parts, such as a license plate is important. Many methods with using deep learning detect the license plate based on number recognition. However, there is an idea that the method using deep learning is difficult to use for autonomous driving because of the complexity in realizing deterministic verification. Therefore, development of a method that does not use deep learning(DL) has become important again. Although the authors have made the world’s best performance in 2018 for Caltech data with using DL, this concept has now turned to another research without using DL. The CT5L method is the latest type, that includes techniques of the continuity of vertical and horizontal black-and-white pixel values inside the plate, unique Hough transform, only vertical and horizontal lines are detected, the top five in the order of the number of votes to ensure good performance. In this paper, a method to determine the threshold value for binarizing input by machine learning is proposed, and good results are obtained. The detection rate is improved by about 20 points in percent as compared to the fixed case. It achieves the best performance among the conventional fixed threshold method, Otsu’s method, and the conventional method of JavaANPR.\",\"PeriodicalId\":168208,\"journal\":{\"name\":\"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15439/2019F121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2019F121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
License Plate Detection with Machine Learning Without Using Number Recognition
In autonomous driving, detecting vehicles together with their parts, such as a license plate is important. Many methods with using deep learning detect the license plate based on number recognition. However, there is an idea that the method using deep learning is difficult to use for autonomous driving because of the complexity in realizing deterministic verification. Therefore, development of a method that does not use deep learning(DL) has become important again. Although the authors have made the world’s best performance in 2018 for Caltech data with using DL, this concept has now turned to another research without using DL. The CT5L method is the latest type, that includes techniques of the continuity of vertical and horizontal black-and-white pixel values inside the plate, unique Hough transform, only vertical and horizontal lines are detected, the top five in the order of the number of votes to ensure good performance. In this paper, a method to determine the threshold value for binarizing input by machine learning is proposed, and good results are obtained. The detection rate is improved by about 20 points in percent as compared to the fixed case. It achieves the best performance among the conventional fixed threshold method, Otsu’s method, and the conventional method of JavaANPR.