MiCA:大规模分布式监控的实时混合压缩方案

Bo Wang, Ying Song, Yuzhong Sun, Jun Liu
{"title":"MiCA:大规模分布式监控的实时混合压缩方案","authors":"Bo Wang, Ying Song, Yuzhong Sun, Jun Liu","doi":"10.1109/ICPP.2014.53","DOIUrl":null,"url":null,"abstract":"Real-time monitoring, providing the real-time status information of servers, is indispensable for the management of distributed systems, e.g. failure detection and resource scheduling. The scalability of fine-grained monitoring faces more and more severe challenges with scaling up distributed systems. The real-time compression which suppresses remote information update to reduce continuous monitoring cost is a promising approach to address the scalability problem. In this paper, we present the Linear Compression Algorithm (LCA) which is the application of the linear filter to real-time monitoring. To our best knowledge, existing work and LCA only explores the correlations of values of each single metric at various times. We present a novel lightweight REal-time Compression Algorithm (ReCA) which employs discovery methods of the correlation among metrics to suppress remote information update in distributed monitoring. The compression algorithms mentioned above have limited compression power because they only explore either the correlations of values of each single metric at various times or that among metrics. Therefore, we propose the Mixed Compression Algorithm (MiCA) which explores both of the correlations to achieve higher compression ratio. We implement our algorithms and an existing compression algorithm denoted by CCA in a distributed monitoring system Ganglia and conduct extensive experiments. The experimental results show that LCA and ReCA have comparable compression ratios with CCA, that MiCA achieves up to 38.2%, 27% and 44.5% higher compression ratios than CCA, LCA and ReCA with negligible overhead, respectively, and that LCA, and ReCA can both increase the scalability of Ganglia about 1.5 times and MiCA can increase about 2.33 times under a mixed-load circumstance.","PeriodicalId":441115,"journal":{"name":"2014 43rd International Conference on Parallel Processing","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MiCA: Real-Time Mixed Compression Scheme for Large-Scale Distributed Monitoring\",\"authors\":\"Bo Wang, Ying Song, Yuzhong Sun, Jun Liu\",\"doi\":\"10.1109/ICPP.2014.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time monitoring, providing the real-time status information of servers, is indispensable for the management of distributed systems, e.g. failure detection and resource scheduling. The scalability of fine-grained monitoring faces more and more severe challenges with scaling up distributed systems. The real-time compression which suppresses remote information update to reduce continuous monitoring cost is a promising approach to address the scalability problem. In this paper, we present the Linear Compression Algorithm (LCA) which is the application of the linear filter to real-time monitoring. To our best knowledge, existing work and LCA only explores the correlations of values of each single metric at various times. We present a novel lightweight REal-time Compression Algorithm (ReCA) which employs discovery methods of the correlation among metrics to suppress remote information update in distributed monitoring. The compression algorithms mentioned above have limited compression power because they only explore either the correlations of values of each single metric at various times or that among metrics. Therefore, we propose the Mixed Compression Algorithm (MiCA) which explores both of the correlations to achieve higher compression ratio. We implement our algorithms and an existing compression algorithm denoted by CCA in a distributed monitoring system Ganglia and conduct extensive experiments. The experimental results show that LCA and ReCA have comparable compression ratios with CCA, that MiCA achieves up to 38.2%, 27% and 44.5% higher compression ratios than CCA, LCA and ReCA with negligible overhead, respectively, and that LCA, and ReCA can both increase the scalability of Ganglia about 1.5 times and MiCA can increase about 2.33 times under a mixed-load circumstance.\",\"PeriodicalId\":441115,\"journal\":{\"name\":\"2014 43rd International Conference on Parallel Processing\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 43rd International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2014.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 43rd International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2014.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

实时监控,提供服务器的实时状态信息,对于分布式系统的管理是必不可少的,例如故障检测和资源调度。随着分布式系统规模的不断扩大,细粒度监控的可扩展性面临着越来越严峻的挑战。实时压缩抑制远程信息更新以降低连续监控成本是解决可扩展性问题的一种很有前途的方法。本文提出了线性压缩算法(LCA),它是线性滤波器在实时监控中的应用。据我们所知,现有的工作和LCA只探索每个单一指标在不同时间的值的相关性。提出了一种新的轻量级实时压缩算法(ReCA),该算法利用指标间的相关性发现方法来抑制分布式监控中的远程信息更新。上面提到的压缩算法的压缩能力有限,因为它们只探索每个单一指标在不同时间的值的相关性或指标之间的相关性。因此,我们提出了混合压缩算法(MiCA),该算法探索了两者的相关性,以获得更高的压缩比。我们在分布式监控系统Ganglia中实现了我们的算法和现有的CCA压缩算法,并进行了大量的实验。实验结果表明,LCA和ReCA的压缩比与CCA相当,在开销可以忽略的情况下,MiCA的压缩比分别比CCA、LCA和ReCA高38.2%、27%和44.5%,在混合负载情况下,LCA和ReCA的可扩展性分别提高1.5倍和2.33倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MiCA: Real-Time Mixed Compression Scheme for Large-Scale Distributed Monitoring
Real-time monitoring, providing the real-time status information of servers, is indispensable for the management of distributed systems, e.g. failure detection and resource scheduling. The scalability of fine-grained monitoring faces more and more severe challenges with scaling up distributed systems. The real-time compression which suppresses remote information update to reduce continuous monitoring cost is a promising approach to address the scalability problem. In this paper, we present the Linear Compression Algorithm (LCA) which is the application of the linear filter to real-time monitoring. To our best knowledge, existing work and LCA only explores the correlations of values of each single metric at various times. We present a novel lightweight REal-time Compression Algorithm (ReCA) which employs discovery methods of the correlation among metrics to suppress remote information update in distributed monitoring. The compression algorithms mentioned above have limited compression power because they only explore either the correlations of values of each single metric at various times or that among metrics. Therefore, we propose the Mixed Compression Algorithm (MiCA) which explores both of the correlations to achieve higher compression ratio. We implement our algorithms and an existing compression algorithm denoted by CCA in a distributed monitoring system Ganglia and conduct extensive experiments. The experimental results show that LCA and ReCA have comparable compression ratios with CCA, that MiCA achieves up to 38.2%, 27% and 44.5% higher compression ratios than CCA, LCA and ReCA with negligible overhead, respectively, and that LCA, and ReCA can both increase the scalability of Ganglia about 1.5 times and MiCA can increase about 2.33 times under a mixed-load circumstance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信