{"title":"基于最接近向量定理的秘密共享方案和对私钥密码系统的改进","authors":"B. Fine, A. Moldenhauer, G. Rosenberger","doi":"10.1515/gcc-2013-0012","DOIUrl":null,"url":null,"abstract":"Abstract. We explain and perform the steps for an (n,t) secret sharing scheme based on the closest vector theorem. We then compare this scheme and its complexity to the secret sharing schemes of both Shamir and Panagopoulos. Finally we modify the (n,t) secret sharing scheme to a private key cryptosystem.","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A secret sharing scheme based on the Closest Vector Theorem and a modification to a private key cryptosystem\",\"authors\":\"B. Fine, A. Moldenhauer, G. Rosenberger\",\"doi\":\"10.1515/gcc-2013-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We explain and perform the steps for an (n,t) secret sharing scheme based on the closest vector theorem. We then compare this scheme and its complexity to the secret sharing schemes of both Shamir and Panagopoulos. Finally we modify the (n,t) secret sharing scheme to a private key cryptosystem.\",\"PeriodicalId\":119576,\"journal\":{\"name\":\"Groups Complex. Cryptol.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complex. Cryptol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2013-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2013-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A secret sharing scheme based on the Closest Vector Theorem and a modification to a private key cryptosystem
Abstract. We explain and perform the steps for an (n,t) secret sharing scheme based on the closest vector theorem. We then compare this scheme and its complexity to the secret sharing schemes of both Shamir and Panagopoulos. Finally we modify the (n,t) secret sharing scheme to a private key cryptosystem.