免疫粒子群混合优化算法研究

L. Hong, Zhi-cheng Ji, C. Gong
{"title":"免疫粒子群混合优化算法研究","authors":"L. Hong, Zhi-cheng Ji, C. Gong","doi":"10.1109/CCPR.2009.5344153","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) has poor diversity, slow convergence speed and is easy to trap into local optimum during the course of searching, a modified particle swarm optimization algorithm based on immune mechanism is proposed. The new algorithm has both the properties of the original particle swarm optimization algorithm and the immune diversity keeping mechanism, and can improve the abilities of seeking the global optimum and evolution speed. The simulation results of multi-modal function optimization show that the proposed algorithm can inhibit premature effectively and has preferable global convergent performance.","PeriodicalId":354468,"journal":{"name":"2009 Chinese Conference on Pattern Recognition","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on Immune PSO Hybrid Optimization Algorithm\",\"authors\":\"L. Hong, Zhi-cheng Ji, C. Gong\",\"doi\":\"10.1109/CCPR.2009.5344153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) has poor diversity, slow convergence speed and is easy to trap into local optimum during the course of searching, a modified particle swarm optimization algorithm based on immune mechanism is proposed. The new algorithm has both the properties of the original particle swarm optimization algorithm and the immune diversity keeping mechanism, and can improve the abilities of seeking the global optimum and evolution speed. The simulation results of multi-modal function optimization show that the proposed algorithm can inhibit premature effectively and has preferable global convergent performance.\",\"PeriodicalId\":354468,\"journal\":{\"name\":\"2009 Chinese Conference on Pattern Recognition\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2009.5344153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2009.5344153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对粒子群优化算法多样性差、收敛速度慢以及在搜索过程中容易陷入局部最优的缺点,提出了一种基于免疫机制的改进粒子群优化算法。新算法既具有原有粒子群优化算法的特性,又具有免疫多样性保持机制,能够提高全局寻优能力和进化速度。多模态函数优化仿真结果表明,该算法能有效抑制早熟,具有较好的全局收敛性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Immune PSO Hybrid Optimization Algorithm
Particle swarm optimization (PSO) has poor diversity, slow convergence speed and is easy to trap into local optimum during the course of searching, a modified particle swarm optimization algorithm based on immune mechanism is proposed. The new algorithm has both the properties of the original particle swarm optimization algorithm and the immune diversity keeping mechanism, and can improve the abilities of seeking the global optimum and evolution speed. The simulation results of multi-modal function optimization show that the proposed algorithm can inhibit premature effectively and has preferable global convergent performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信