用于声源运动跟踪和预测的递归神经网络

J. Murray, H. Erwin, S. Wermter
{"title":"用于声源运动跟踪和预测的递归神经网络","authors":"J. Murray, H. Erwin, S. Wermter","doi":"10.1109/IJCNN.2005.1556248","DOIUrl":null,"url":null,"abstract":"Recurrent neural networks (RNN) have been used in many applications for both pattern detection and prediction. This paper shows the use of RNN's as a speed classifier and predictor for a robotic sound source tracking system. The system requires extensive training to classify all possible speeds to enable dynamic tracking of the most prominent sound within the environment.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A recurrent neural network for sound-source motion tracking and prediction\",\"authors\":\"J. Murray, H. Erwin, S. Wermter\",\"doi\":\"10.1109/IJCNN.2005.1556248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recurrent neural networks (RNN) have been used in many applications for both pattern detection and prediction. This paper shows the use of RNN's as a speed classifier and predictor for a robotic sound source tracking system. The system requires extensive training to classify all possible speeds to enable dynamic tracking of the most prominent sound within the environment.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1556248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

递归神经网络(RNN)在模式检测和模式预测方面有着广泛的应用。本文展示了RNN作为机器人声源跟踪系统的速度分类器和预测器的使用。该系统需要大量的训练来分类所有可能的速度,以便动态跟踪环境中最突出的声音。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A recurrent neural network for sound-source motion tracking and prediction
Recurrent neural networks (RNN) have been used in many applications for both pattern detection and prediction. This paper shows the use of RNN's as a speed classifier and predictor for a robotic sound source tracking system. The system requires extensive training to classify all possible speeds to enable dynamic tracking of the most prominent sound within the environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信