形状自适应移动机器人的空间联动外骨骼

David E. Geyer, C. Turner
{"title":"形状自适应移动机器人的空间联动外骨骼","authors":"David E. Geyer, C. Turner","doi":"10.1115/detc2019-98221","DOIUrl":null,"url":null,"abstract":"\n With the goal of developing a spatial linkage exoskeleton for a shape-adaptive mobile robot, capable of navigating obstacle-laden environments through changes in geometry, initial research focused on the nature of axis transformations, and parameters affecting linkages, such as the Denavit-Hartenberg (DH) parameters. Building on this background, angulated linkages are developed such that a series of scissor pairs, two angulated linkages connected at their midpoints, forming a closed-loop. Using the DH parameters, the geometries are considered in the development of a planar model. A kinematic model is also developed to replicate the design in future work. A linkage was designed using SolidWorks, and then imported into MATLAB’s Simscape Multibody software where a visual, analytical model was developed. The nominal planar model acts as the basis of a spatial model. Using the spatial model, initial prototypes were built to verify the virtual model. A concept for an actuation mechanism is discussed, with a prototype built to identify any limitations. Through experimentation and analysis of the prototypes, areas for improvement in the design are identified. Future work is discussed to further mature the design and development of this solution.","PeriodicalId":352702,"journal":{"name":"Volume 1: 39th Computers and Information in Engineering Conference","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spatial Linkage Exoskeleton for a Shape-Adaptive Mobile Robot\",\"authors\":\"David E. Geyer, C. Turner\",\"doi\":\"10.1115/detc2019-98221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With the goal of developing a spatial linkage exoskeleton for a shape-adaptive mobile robot, capable of navigating obstacle-laden environments through changes in geometry, initial research focused on the nature of axis transformations, and parameters affecting linkages, such as the Denavit-Hartenberg (DH) parameters. Building on this background, angulated linkages are developed such that a series of scissor pairs, two angulated linkages connected at their midpoints, forming a closed-loop. Using the DH parameters, the geometries are considered in the development of a planar model. A kinematic model is also developed to replicate the design in future work. A linkage was designed using SolidWorks, and then imported into MATLAB’s Simscape Multibody software where a visual, analytical model was developed. The nominal planar model acts as the basis of a spatial model. Using the spatial model, initial prototypes were built to verify the virtual model. A concept for an actuation mechanism is discussed, with a prototype built to identify any limitations. Through experimentation and analysis of the prototypes, areas for improvement in the design are identified. Future work is discussed to further mature the design and development of this solution.\",\"PeriodicalId\":352702,\"journal\":{\"name\":\"Volume 1: 39th Computers and Information in Engineering Conference\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: 39th Computers and Information in Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: 39th Computers and Information in Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了开发一种形状自适应移动机器人的空间连杆外骨骼,使其能够通过几何形状的变化在充满障碍物的环境中导航,最初的研究集中在轴变换的性质和影响连杆的参数上,如Denavit-Hartenberg (DH)参数。在此背景下,角连杆被开发成一系列剪刀对,两个角连杆在它们的中点相连,形成一个闭环。利用DH参数,在平面模型的开发中考虑了几何形状。还开发了一个运动学模型,以便在未来的工作中复制该设计。利用SolidWorks设计了一个连杆机构,然后导入MATLAB的Simscape Multibody软件,在该软件中开发了可视化的分析模型。名义平面模型作为空间模型的基础。利用空间模型建立了初始样机,对虚拟模型进行了验证。讨论了驱动机构的概念,并建立了一个原型来确定任何限制。通过对原型的实验和分析,确定了设计中需要改进的地方。讨论了未来的工作,以进一步完善该解决方案的设计和开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Spatial Linkage Exoskeleton for a Shape-Adaptive Mobile Robot
With the goal of developing a spatial linkage exoskeleton for a shape-adaptive mobile robot, capable of navigating obstacle-laden environments through changes in geometry, initial research focused on the nature of axis transformations, and parameters affecting linkages, such as the Denavit-Hartenberg (DH) parameters. Building on this background, angulated linkages are developed such that a series of scissor pairs, two angulated linkages connected at their midpoints, forming a closed-loop. Using the DH parameters, the geometries are considered in the development of a planar model. A kinematic model is also developed to replicate the design in future work. A linkage was designed using SolidWorks, and then imported into MATLAB’s Simscape Multibody software where a visual, analytical model was developed. The nominal planar model acts as the basis of a spatial model. Using the spatial model, initial prototypes were built to verify the virtual model. A concept for an actuation mechanism is discussed, with a prototype built to identify any limitations. Through experimentation and analysis of the prototypes, areas for improvement in the design are identified. Future work is discussed to further mature the design and development of this solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信