基于标签上马尔可夫随机行走的图像多模态视觉概念分类

M. Kawanabe, Alexander Binder, Christina Müller, W. Wojcikiewicz
{"title":"基于标签上马尔可夫随机行走的图像多模态视觉概念分类","authors":"M. Kawanabe, Alexander Binder, Christina Müller, W. Wojcikiewicz","doi":"10.1109/WACV.2011.5711531","DOIUrl":null,"url":null,"abstract":"Automatic annotation of images is a challenging task in computer vision because of “semantic gap” between highlevel visual concepts and image appearances. Therefore, user tags attached to images can provide further information to bridge the gap, even though they are partially uninformative and misleading. In this work, we investigate multi-modal visual concept classification based on visual features and user tags via kernel-based classifiers. An issue here is how to construct kernels between sets of tags. We deploy Markov random walks on graphs of key tags to incorporate co-occurrence between them. This procedure acts as a smoothing of tag based features. Our experimental result on the ImageCLEF2010 PhotoAnnotation benchmark shows that our proposed method outperforms the baseline relying solely on visual information and a recently published state-of-the-art approach.","PeriodicalId":424724,"journal":{"name":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Multi-modal visual concept classification of images via Markov random walk over tags\",\"authors\":\"M. Kawanabe, Alexander Binder, Christina Müller, W. Wojcikiewicz\",\"doi\":\"10.1109/WACV.2011.5711531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic annotation of images is a challenging task in computer vision because of “semantic gap” between highlevel visual concepts and image appearances. Therefore, user tags attached to images can provide further information to bridge the gap, even though they are partially uninformative and misleading. In this work, we investigate multi-modal visual concept classification based on visual features and user tags via kernel-based classifiers. An issue here is how to construct kernels between sets of tags. We deploy Markov random walks on graphs of key tags to incorporate co-occurrence between them. This procedure acts as a smoothing of tag based features. Our experimental result on the ImageCLEF2010 PhotoAnnotation benchmark shows that our proposed method outperforms the baseline relying solely on visual information and a recently published state-of-the-art approach.\",\"PeriodicalId\":424724,\"journal\":{\"name\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2011.5711531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2011.5711531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

由于高级视觉概念与图像外观之间存在“语义差距”,图像的自动标注是计算机视觉领域的一个具有挑战性的任务。因此,附加到图像上的用户标签可以提供进一步的信息,以弥补差距,即使它们部分没有提供信息和误导。在这项工作中,我们通过基于核的分类器研究了基于视觉特征和用户标签的多模态视觉概念分类。这里的一个问题是如何在标记集之间构造内核。我们在关键标签的图上部署马尔可夫随机漫步,以结合它们之间的共现性。这个过程的作用是平滑基于标签的特征。我们在ImageCLEF2010 PhotoAnnotation基准上的实验结果表明,我们提出的方法优于仅依赖视觉信息和最近发表的最先进方法的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-modal visual concept classification of images via Markov random walk over tags
Automatic annotation of images is a challenging task in computer vision because of “semantic gap” between highlevel visual concepts and image appearances. Therefore, user tags attached to images can provide further information to bridge the gap, even though they are partially uninformative and misleading. In this work, we investigate multi-modal visual concept classification based on visual features and user tags via kernel-based classifiers. An issue here is how to construct kernels between sets of tags. We deploy Markov random walks on graphs of key tags to incorporate co-occurrence between them. This procedure acts as a smoothing of tag based features. Our experimental result on the ImageCLEF2010 PhotoAnnotation benchmark shows that our proposed method outperforms the baseline relying solely on visual information and a recently published state-of-the-art approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信