Mahmoud Abdulsalam, Zakaria Chekakta, N. Aouf, Maxwell Hogan
{"title":"Fruity:用于精准农业水果识别和6d姿态估计的多模态数据集","authors":"Mahmoud Abdulsalam, Zakaria Chekakta, N. Aouf, Maxwell Hogan","doi":"10.1109/MED59994.2023.10185851","DOIUrl":null,"url":null,"abstract":"The application of robotic platforms for precision agriculture is gaining traction in modern research. However, the demand for a complete fruit dataset is still not satisfied. In this paper, we present fruity, a multi-modal fruit dataset with a variety of use cases such as 6D-pose estimation, fruit detection, fruit picking applications, etc. To the best of our knowledge, this dataset is the first-ever multi-modal fruit dataset tailored specifically for fruit 6D pose estimation in precision agriculture. The dataset is collected over a range of multiple sensors consisting of an RGB-D camera, thermal camera and an indoor tracking camera for ground truth poses. Fruity features RGB images, stereo depth images, thermal images, camera 6Dposes, fruit 6D-poses and relative 6D-poses between the cameras and fruits. The classes of the dataset are commonly harvested fruits which include: apples, oranges, bananas, avocados and lemons. It is also enriched with a clustered class to account for occlusion scenario. The dataset is recorded over multiple trajectories implemented with multiple platforms encompassing a robotic manipulator and an Unmanned Aerial Vehicle (UAV). The dataset alongside the documentation and utility tools is publicly available at: https://github.com/MahmoudYidi/Fruity.git.","PeriodicalId":270226,"journal":{"name":"2023 31st Mediterranean Conference on Control and Automation (MED)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fruity: A Multi-modal Dataset for Fruit Recognition and 6D-Pose Estimation in Precision Agriculture\",\"authors\":\"Mahmoud Abdulsalam, Zakaria Chekakta, N. Aouf, Maxwell Hogan\",\"doi\":\"10.1109/MED59994.2023.10185851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of robotic platforms for precision agriculture is gaining traction in modern research. However, the demand for a complete fruit dataset is still not satisfied. In this paper, we present fruity, a multi-modal fruit dataset with a variety of use cases such as 6D-pose estimation, fruit detection, fruit picking applications, etc. To the best of our knowledge, this dataset is the first-ever multi-modal fruit dataset tailored specifically for fruit 6D pose estimation in precision agriculture. The dataset is collected over a range of multiple sensors consisting of an RGB-D camera, thermal camera and an indoor tracking camera for ground truth poses. Fruity features RGB images, stereo depth images, thermal images, camera 6Dposes, fruit 6D-poses and relative 6D-poses between the cameras and fruits. The classes of the dataset are commonly harvested fruits which include: apples, oranges, bananas, avocados and lemons. It is also enriched with a clustered class to account for occlusion scenario. The dataset is recorded over multiple trajectories implemented with multiple platforms encompassing a robotic manipulator and an Unmanned Aerial Vehicle (UAV). The dataset alongside the documentation and utility tools is publicly available at: https://github.com/MahmoudYidi/Fruity.git.\",\"PeriodicalId\":270226,\"journal\":{\"name\":\"2023 31st Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 31st Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED59994.2023.10185851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED59994.2023.10185851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fruity: A Multi-modal Dataset for Fruit Recognition and 6D-Pose Estimation in Precision Agriculture
The application of robotic platforms for precision agriculture is gaining traction in modern research. However, the demand for a complete fruit dataset is still not satisfied. In this paper, we present fruity, a multi-modal fruit dataset with a variety of use cases such as 6D-pose estimation, fruit detection, fruit picking applications, etc. To the best of our knowledge, this dataset is the first-ever multi-modal fruit dataset tailored specifically for fruit 6D pose estimation in precision agriculture. The dataset is collected over a range of multiple sensors consisting of an RGB-D camera, thermal camera and an indoor tracking camera for ground truth poses. Fruity features RGB images, stereo depth images, thermal images, camera 6Dposes, fruit 6D-poses and relative 6D-poses between the cameras and fruits. The classes of the dataset are commonly harvested fruits which include: apples, oranges, bananas, avocados and lemons. It is also enriched with a clustered class to account for occlusion scenario. The dataset is recorded over multiple trajectories implemented with multiple platforms encompassing a robotic manipulator and an Unmanned Aerial Vehicle (UAV). The dataset alongside the documentation and utility tools is publicly available at: https://github.com/MahmoudYidi/Fruity.git.