{"title":"基于估计收敛点的多目标混沌进化算法的改进","authors":"Fengkai Guo, Yan Pei","doi":"10.1109/CYBCONF51991.2021.9464144","DOIUrl":null,"url":null,"abstract":"In this paper, we attempt to use a method of estimating a convergence point of the population to accelerate the search of the multi-objective chaotic evolution optimization. The movement vectors between generations have powerful information for inducing the search direction of the global optimum solution. We use these movement vectors that are composed of the non-dominated Pareto solutions to estimate a convergence point in which is the first Pareto front solution to enhance the search of multi-objective chaotic evolution algorithm. The estimated point is constricted by the movement vectors, and we use the estimated point to replace the population’s dominated solution to achieve the objective of enhancing the multi-objective chaotic evolution algorithm. We use hypervolume, generational distance, and inverted generational distance to evaluate our proposal. The result indicates that using an estimated point can accelerate the search of the multi-objective chaotic evolution algorithm.","PeriodicalId":231194,"journal":{"name":"2021 5th IEEE International Conference on Cybernetics (CYBCONF)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing multi-objective chaotic evolution algorithm using an estimated convergence point\",\"authors\":\"Fengkai Guo, Yan Pei\",\"doi\":\"10.1109/CYBCONF51991.2021.9464144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we attempt to use a method of estimating a convergence point of the population to accelerate the search of the multi-objective chaotic evolution optimization. The movement vectors between generations have powerful information for inducing the search direction of the global optimum solution. We use these movement vectors that are composed of the non-dominated Pareto solutions to estimate a convergence point in which is the first Pareto front solution to enhance the search of multi-objective chaotic evolution algorithm. The estimated point is constricted by the movement vectors, and we use the estimated point to replace the population’s dominated solution to achieve the objective of enhancing the multi-objective chaotic evolution algorithm. We use hypervolume, generational distance, and inverted generational distance to evaluate our proposal. The result indicates that using an estimated point can accelerate the search of the multi-objective chaotic evolution algorithm.\",\"PeriodicalId\":231194,\"journal\":{\"name\":\"2021 5th IEEE International Conference on Cybernetics (CYBCONF)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 5th IEEE International Conference on Cybernetics (CYBCONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBCONF51991.2021.9464144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th IEEE International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBCONF51991.2021.9464144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing multi-objective chaotic evolution algorithm using an estimated convergence point
In this paper, we attempt to use a method of estimating a convergence point of the population to accelerate the search of the multi-objective chaotic evolution optimization. The movement vectors between generations have powerful information for inducing the search direction of the global optimum solution. We use these movement vectors that are composed of the non-dominated Pareto solutions to estimate a convergence point in which is the first Pareto front solution to enhance the search of multi-objective chaotic evolution algorithm. The estimated point is constricted by the movement vectors, and we use the estimated point to replace the population’s dominated solution to achieve the objective of enhancing the multi-objective chaotic evolution algorithm. We use hypervolume, generational distance, and inverted generational distance to evaluate our proposal. The result indicates that using an estimated point can accelerate the search of the multi-objective chaotic evolution algorithm.