基于估计收敛点的多目标混沌进化算法的改进

Fengkai Guo, Yan Pei
{"title":"基于估计收敛点的多目标混沌进化算法的改进","authors":"Fengkai Guo, Yan Pei","doi":"10.1109/CYBCONF51991.2021.9464144","DOIUrl":null,"url":null,"abstract":"In this paper, we attempt to use a method of estimating a convergence point of the population to accelerate the search of the multi-objective chaotic evolution optimization. The movement vectors between generations have powerful information for inducing the search direction of the global optimum solution. We use these movement vectors that are composed of the non-dominated Pareto solutions to estimate a convergence point in which is the first Pareto front solution to enhance the search of multi-objective chaotic evolution algorithm. The estimated point is constricted by the movement vectors, and we use the estimated point to replace the population’s dominated solution to achieve the objective of enhancing the multi-objective chaotic evolution algorithm. We use hypervolume, generational distance, and inverted generational distance to evaluate our proposal. The result indicates that using an estimated point can accelerate the search of the multi-objective chaotic evolution algorithm.","PeriodicalId":231194,"journal":{"name":"2021 5th IEEE International Conference on Cybernetics (CYBCONF)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing multi-objective chaotic evolution algorithm using an estimated convergence point\",\"authors\":\"Fengkai Guo, Yan Pei\",\"doi\":\"10.1109/CYBCONF51991.2021.9464144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we attempt to use a method of estimating a convergence point of the population to accelerate the search of the multi-objective chaotic evolution optimization. The movement vectors between generations have powerful information for inducing the search direction of the global optimum solution. We use these movement vectors that are composed of the non-dominated Pareto solutions to estimate a convergence point in which is the first Pareto front solution to enhance the search of multi-objective chaotic evolution algorithm. The estimated point is constricted by the movement vectors, and we use the estimated point to replace the population’s dominated solution to achieve the objective of enhancing the multi-objective chaotic evolution algorithm. We use hypervolume, generational distance, and inverted generational distance to evaluate our proposal. The result indicates that using an estimated point can accelerate the search of the multi-objective chaotic evolution algorithm.\",\"PeriodicalId\":231194,\"journal\":{\"name\":\"2021 5th IEEE International Conference on Cybernetics (CYBCONF)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 5th IEEE International Conference on Cybernetics (CYBCONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBCONF51991.2021.9464144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th IEEE International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBCONF51991.2021.9464144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们尝试使用一种估计种群收敛点的方法来加速多目标混沌进化优化的搜索。代与代之间的运动向量对于诱导全局最优解的搜索方向具有强大的信息量。我们使用这些由非支配Pareto解组成的运动向量来估计一个收敛点,该收敛点是第一个Pareto前解,以增强多目标混沌进化算法的搜索能力。估计点被运动向量压缩,用估计点取代种群的主导解,达到增强多目标混沌进化算法的目的。我们使用hypervolume,代际距离和倒代际距离来评估我们的建议。结果表明,使用估计点可以加快多目标混沌进化算法的搜索速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing multi-objective chaotic evolution algorithm using an estimated convergence point
In this paper, we attempt to use a method of estimating a convergence point of the population to accelerate the search of the multi-objective chaotic evolution optimization. The movement vectors between generations have powerful information for inducing the search direction of the global optimum solution. We use these movement vectors that are composed of the non-dominated Pareto solutions to estimate a convergence point in which is the first Pareto front solution to enhance the search of multi-objective chaotic evolution algorithm. The estimated point is constricted by the movement vectors, and we use the estimated point to replace the population’s dominated solution to achieve the objective of enhancing the multi-objective chaotic evolution algorithm. We use hypervolume, generational distance, and inverted generational distance to evaluate our proposal. The result indicates that using an estimated point can accelerate the search of the multi-objective chaotic evolution algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信