监控视频中的船舶分类

Qiming Luo, T. Khoshgoftaar, A. Folleco
{"title":"监控视频中的船舶分类","authors":"Qiming Luo, T. Khoshgoftaar, A. Folleco","doi":"10.1109/IRI.2006.252453","DOIUrl":null,"url":null,"abstract":"Object classification is an important component in a complete visual surveillance system. In the context of coastline surveillance, we present an empirical study on classifying 402 instances of ship regions into 6 types based on their shape features. The ship regions were extracted from surveillance videos and the 6 types of ships as well as the ground truth classification labels were provided by human observers. The shape feature of each region was extracted using MPEG-7 region-based shape descriptor. We applied k nearest neighbor to classify ships based on the similarity of their shape features, and the classification accuracy based on stratified ten-fold cross validation is about 91%. The proposed classification procedure based on MPEG-7 region-based shape descriptor and k nearest neighbor algorithm is robust to noise and imperfect object segmentation. It can also be applied to the classification of other rigid objects, such as airplanes, vehicles, etc","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Classification of Ships in Surveillance Video\",\"authors\":\"Qiming Luo, T. Khoshgoftaar, A. Folleco\",\"doi\":\"10.1109/IRI.2006.252453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object classification is an important component in a complete visual surveillance system. In the context of coastline surveillance, we present an empirical study on classifying 402 instances of ship regions into 6 types based on their shape features. The ship regions were extracted from surveillance videos and the 6 types of ships as well as the ground truth classification labels were provided by human observers. The shape feature of each region was extracted using MPEG-7 region-based shape descriptor. We applied k nearest neighbor to classify ships based on the similarity of their shape features, and the classification accuracy based on stratified ten-fold cross validation is about 91%. The proposed classification procedure based on MPEG-7 region-based shape descriptor and k nearest neighbor algorithm is robust to noise and imperfect object segmentation. It can also be applied to the classification of other rigid objects, such as airplanes, vehicles, etc\",\"PeriodicalId\":402255,\"journal\":{\"name\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2006.252453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

目标分类是一个完整的视觉监控系统的重要组成部分。在海岸线监测的背景下,我们对402个船舶区域实例进行了实证研究,并根据其形状特征将其分为6类。从监控视频中提取船舶区域,由人工观察员提供6类船舶及地物真实度分类标签。利用基于MPEG-7的区域形状描述符提取每个区域的形状特征。我们基于船舶形状特征的相似性,应用k近邻对船舶进行分类,基于分层十倍交叉验证的分类准确率约为91%。基于MPEG-7区域形状描述符和k近邻算法的分类方法对噪声和不完美目标分割具有较强的鲁棒性。也可应用于其他刚性物体的分类,如飞机、车辆等
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Ships in Surveillance Video
Object classification is an important component in a complete visual surveillance system. In the context of coastline surveillance, we present an empirical study on classifying 402 instances of ship regions into 6 types based on their shape features. The ship regions were extracted from surveillance videos and the 6 types of ships as well as the ground truth classification labels were provided by human observers. The shape feature of each region was extracted using MPEG-7 region-based shape descriptor. We applied k nearest neighbor to classify ships based on the similarity of their shape features, and the classification accuracy based on stratified ten-fold cross validation is about 91%. The proposed classification procedure based on MPEG-7 region-based shape descriptor and k nearest neighbor algorithm is robust to noise and imperfect object segmentation. It can also be applied to the classification of other rigid objects, such as airplanes, vehicles, etc
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信