S. Hale, W. Chaplin, G. Davies, Y. Elsworth, R. Howe
{"title":"探测器带宽和偏振开关率:伯明翰太阳振荡网络(BiSON)对太阳的分光光度观测","authors":"S. Hale, W. Chaplin, G. Davies, Y. Elsworth, R. Howe","doi":"10.1093/rasti/rzad008","DOIUrl":null,"url":null,"abstract":"\n The Birmingham Solar Oscillations Network (BiSON) observes acoustic oscillations of the Sun. The dominant noise source is caused by fluctuations of Earth’s atmosphere, and BiSON seeks to mitigate this effect by combining multiple rapid observations in alternating polarisation states. Current instrumentation uses bespoke Pockels-effect cells to select the polarisation state. Here, we investigate an alternative off-the-shelf solution, a liquid crystal retarder, and discuss the potential impact of differences in performance. We show through electrical simulation of the photodiode-based detectors, and assessment of both types of polarisation device, that although the switching rate is slower the off-the-shelf LCD retarder is a viable replacement for a bespoke Pockels-effect cell. The simplifications arising from the use of off-the-shelf components allows easier and quicker instrumentation deployment.","PeriodicalId":367327,"journal":{"name":"RAS Techniques and Instruments","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detector bandwidth and polarisation switching rates: Spectrophotometric observations of the Sun by the Birmingham Solar Oscillations Network (BiSON)\",\"authors\":\"S. Hale, W. Chaplin, G. Davies, Y. Elsworth, R. Howe\",\"doi\":\"10.1093/rasti/rzad008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Birmingham Solar Oscillations Network (BiSON) observes acoustic oscillations of the Sun. The dominant noise source is caused by fluctuations of Earth’s atmosphere, and BiSON seeks to mitigate this effect by combining multiple rapid observations in alternating polarisation states. Current instrumentation uses bespoke Pockels-effect cells to select the polarisation state. Here, we investigate an alternative off-the-shelf solution, a liquid crystal retarder, and discuss the potential impact of differences in performance. We show through electrical simulation of the photodiode-based detectors, and assessment of both types of polarisation device, that although the switching rate is slower the off-the-shelf LCD retarder is a viable replacement for a bespoke Pockels-effect cell. The simplifications arising from the use of off-the-shelf components allows easier and quicker instrumentation deployment.\",\"PeriodicalId\":367327,\"journal\":{\"name\":\"RAS Techniques and Instruments\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAS Techniques and Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/rasti/rzad008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAS Techniques and Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/rasti/rzad008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detector bandwidth and polarisation switching rates: Spectrophotometric observations of the Sun by the Birmingham Solar Oscillations Network (BiSON)
The Birmingham Solar Oscillations Network (BiSON) observes acoustic oscillations of the Sun. The dominant noise source is caused by fluctuations of Earth’s atmosphere, and BiSON seeks to mitigate this effect by combining multiple rapid observations in alternating polarisation states. Current instrumentation uses bespoke Pockels-effect cells to select the polarisation state. Here, we investigate an alternative off-the-shelf solution, a liquid crystal retarder, and discuss the potential impact of differences in performance. We show through electrical simulation of the photodiode-based detectors, and assessment of both types of polarisation device, that although the switching rate is slower the off-the-shelf LCD retarder is a viable replacement for a bespoke Pockels-effect cell. The simplifications arising from the use of off-the-shelf components allows easier and quicker instrumentation deployment.