完备域上最小秩代数

M. Blaser
{"title":"完备域上最小秩代数","authors":"M. Blaser","doi":"10.1109/CCC.2002.1004346","DOIUrl":null,"url":null,"abstract":"Let R(A) denote the rank (also called the bilinear complexity) of a finite-dimensional associative algebra A. A fundamental lower bound for R(A) is the so-called Alder-Strassen (1981) bound: R(A) /spl ges/ 2 dim A-t, where t is the number of maximal two-sided ideals of A. The class of algebras for which the Alder-Strassen bound is sharp, the so-called \"algebras of minimal rank\", has received wide attention in algebraic complexity theory. We characterize all algebras of minimal rank over perfect fields. This solves an open problem in algebraic complexity theory over perfect fields [as discussed by V. Strassen (1990) and P. Bu/spl uml/rgisser et al. (1997)]. As a by-product, we determine all algebras A of minimal rank with A/rad A /spl cong/ k/sup t/ over arbitrary fields.","PeriodicalId":193513,"journal":{"name":"Proceedings 17th IEEE Annual Conference on Computational Complexity","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Algebras of minimal rank over perfect fields\",\"authors\":\"M. Blaser\",\"doi\":\"10.1109/CCC.2002.1004346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R(A) denote the rank (also called the bilinear complexity) of a finite-dimensional associative algebra A. A fundamental lower bound for R(A) is the so-called Alder-Strassen (1981) bound: R(A) /spl ges/ 2 dim A-t, where t is the number of maximal two-sided ideals of A. The class of algebras for which the Alder-Strassen bound is sharp, the so-called \\\"algebras of minimal rank\\\", has received wide attention in algebraic complexity theory. We characterize all algebras of minimal rank over perfect fields. This solves an open problem in algebraic complexity theory over perfect fields [as discussed by V. Strassen (1990) and P. Bu/spl uml/rgisser et al. (1997)]. As a by-product, we determine all algebras A of minimal rank with A/rad A /spl cong/ k/sup t/ over arbitrary fields.\",\"PeriodicalId\":193513,\"journal\":{\"name\":\"Proceedings 17th IEEE Annual Conference on Computational Complexity\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 17th IEEE Annual Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2002.1004346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th IEEE Annual Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2002.1004346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设R(A)表示有限维关联代数A的秩(也称为双线性复杂度)。R(A)的基本下界是所谓的Alder-Strassen(1981)界:R(A) /spl ges/ 2 dim A-t,其中t是A的极大双侧理想数。Alder-Strassen界尖锐的代数类,即所谓的“最小秩代数”,在代数复杂性理论中受到广泛关注。我们刻画了完美域上所有最小秩代数。这解决了完美场上代数复杂性理论中的一个开放问题[如V. Strassen(1990)和P. Bu/spl uml/rgisser等人(1997)所讨论]。作为副产物,我们确定了任意域上a /rad a /spl cong/ k/sup /的最小秩代数a。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebras of minimal rank over perfect fields
Let R(A) denote the rank (also called the bilinear complexity) of a finite-dimensional associative algebra A. A fundamental lower bound for R(A) is the so-called Alder-Strassen (1981) bound: R(A) /spl ges/ 2 dim A-t, where t is the number of maximal two-sided ideals of A. The class of algebras for which the Alder-Strassen bound is sharp, the so-called "algebras of minimal rank", has received wide attention in algebraic complexity theory. We characterize all algebras of minimal rank over perfect fields. This solves an open problem in algebraic complexity theory over perfect fields [as discussed by V. Strassen (1990) and P. Bu/spl uml/rgisser et al. (1997)]. As a by-product, we determine all algebras A of minimal rank with A/rad A /spl cong/ k/sup t/ over arbitrary fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信