社交广告中收益最大化的高效算法

Kai Han, Benwei Wu, Jing Tang, Shuang Cui, Çigdem Aslay, L. Lakshmanan
{"title":"社交广告中收益最大化的高效算法","authors":"Kai Han, Benwei Wu, Jing Tang, Shuang Cui, Çigdem Aslay, L. Lakshmanan","doi":"10.1145/3448016.3459243","DOIUrl":null,"url":null,"abstract":"We consider the revenue maximization problem in social advertising, where a social network platform owner needs to select seed users for a group of advertisers, each with a payment budget, such that the total expected revenue that the owner gains from the advertisers by propagating their ads in the network is maximized. Previous studies on this problem show that it is intractable and present approximation algorithms. We revisit this problem from a fresh perspective and develop novel efficient approximation algorithms, both under the setting where an exact influence oracle is assumed and under one where this assumption is relaxed. Our approximation ratios significantly improve upon the previous ones. Furthermore, we empirically show, using extensive experiments on four datasets, that our algorithms considerably outperform the existing methods on both the solution quality and computation efficiency.","PeriodicalId":360379,"journal":{"name":"Proceedings of the 2021 International Conference on Management of Data","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Efficient and Effective Algorithms for Revenue Maximization in Social Advertising\",\"authors\":\"Kai Han, Benwei Wu, Jing Tang, Shuang Cui, Çigdem Aslay, L. Lakshmanan\",\"doi\":\"10.1145/3448016.3459243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the revenue maximization problem in social advertising, where a social network platform owner needs to select seed users for a group of advertisers, each with a payment budget, such that the total expected revenue that the owner gains from the advertisers by propagating their ads in the network is maximized. Previous studies on this problem show that it is intractable and present approximation algorithms. We revisit this problem from a fresh perspective and develop novel efficient approximation algorithms, both under the setting where an exact influence oracle is assumed and under one where this assumption is relaxed. Our approximation ratios significantly improve upon the previous ones. Furthermore, we empirically show, using extensive experiments on four datasets, that our algorithms considerably outperform the existing methods on both the solution quality and computation efficiency.\",\"PeriodicalId\":360379,\"journal\":{\"name\":\"Proceedings of the 2021 International Conference on Management of Data\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3448016.3459243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448016.3459243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们考虑社交广告中的收益最大化问题,其中社交网络平台所有者需要为一组广告商选择种子用户,每个广告商都有支付预算,这样所有者通过在网络中传播广告从广告商那里获得的总预期收益最大化。以往对这一问题的研究表明,它是一个棘手的问题,并提出了近似算法。我们从一个新的角度重新审视这个问题,并开发了新的有效的近似算法,无论是在假设一个精确的影响预测的情况下,还是在假设放松的情况下。我们的近似值比之前的显著提高。此外,通过在四个数据集上进行大量实验,我们的算法在解决质量和计算效率上都大大优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient and Effective Algorithms for Revenue Maximization in Social Advertising
We consider the revenue maximization problem in social advertising, where a social network platform owner needs to select seed users for a group of advertisers, each with a payment budget, such that the total expected revenue that the owner gains from the advertisers by propagating their ads in the network is maximized. Previous studies on this problem show that it is intractable and present approximation algorithms. We revisit this problem from a fresh perspective and develop novel efficient approximation algorithms, both under the setting where an exact influence oracle is assumed and under one where this assumption is relaxed. Our approximation ratios significantly improve upon the previous ones. Furthermore, we empirically show, using extensive experiments on four datasets, that our algorithms considerably outperform the existing methods on both the solution quality and computation efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信