度量空间中马尔可夫控制过程的线性规划逼近

O. Hernández-Lerma, J. Lasserre
{"title":"度量空间中马尔可夫控制过程的线性规划逼近","authors":"O. Hernández-Lerma, J. Lasserre","doi":"10.1109/CDC.1997.657116","DOIUrl":null,"url":null,"abstract":"We develop a general framework to analyze the convergence of linear-programming approximations for Markov control processes in metric spaces. The approximations are based on aggregation and relaxation of constraints, as well as inner approximations of the decision variables. In particular, conditions are given under which the control problem’s optimal value can be approximated by a sequence of finite-dimensional linear programs.","PeriodicalId":229215,"journal":{"name":"Acta Applicandae Mathematica","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Linear Programming Approximations for Markov Control Processes in Metric Spaces\",\"authors\":\"O. Hernández-Lerma, J. Lasserre\",\"doi\":\"10.1109/CDC.1997.657116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a general framework to analyze the convergence of linear-programming approximations for Markov control processes in metric spaces. The approximations are based on aggregation and relaxation of constraints, as well as inner approximations of the decision variables. In particular, conditions are given under which the control problem’s optimal value can be approximated by a sequence of finite-dimensional linear programs.\",\"PeriodicalId\":229215,\"journal\":{\"name\":\"Acta Applicandae Mathematica\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1997.657116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1997.657116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们建立了一个一般框架来分析度量空间中马尔可夫控制过程的线性规划近似的收敛性。逼近是基于约束的聚合和松弛,以及决策变量的内部逼近。特别地,给出了用一系列有限维线性规划逼近控制问题的最优值的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Programming Approximations for Markov Control Processes in Metric Spaces
We develop a general framework to analyze the convergence of linear-programming approximations for Markov control processes in metric spaces. The approximations are based on aggregation and relaxation of constraints, as well as inner approximations of the decision variables. In particular, conditions are given under which the control problem’s optimal value can be approximated by a sequence of finite-dimensional linear programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信