心血管临床决策支持的闭环效应

D. Husmeier, L. Paun
{"title":"心血管临床决策支持的闭环效应","authors":"D. Husmeier, L. Paun","doi":"10.11159/icsta20.128","DOIUrl":null,"url":null,"abstract":"We have recently seen impressive methodological developments in quantitative cardiovascular physiology and pathophysiology, \nwith novel mathematical models for the mechanical and electrophysiological processes of the heart, and fluid dynamical models to describe \nthe pressure and flow distribution in the blood vessel network. This allows us to gain deeper insight into the state of a variety of serious \ncardiovascular diseases. The majority of recent research studies have focused on the forward problem: developing flexible mathematical \nmodels and robust numerical simulation procedures to match characteristics of physiological target data, and the inverse problem: inferring \nmodel parameters from cardiac physiological data with reliable uncertainty quantification. However, when connecting mathematical model \npredictions and statistical inference to the clinical decision process, new challenges arise. This paper briefly discusses the complications \nthat potentially result from closed-loop effects, and the model extensions that are required to reduce the ensuing bias.","PeriodicalId":302827,"journal":{"name":"Proceedings of the 2nd International Conference on Statistics: Theory and Applications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Closed-loop effects in cardiovascular clinical decision support\",\"authors\":\"D. Husmeier, L. Paun\",\"doi\":\"10.11159/icsta20.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have recently seen impressive methodological developments in quantitative cardiovascular physiology and pathophysiology, \\nwith novel mathematical models for the mechanical and electrophysiological processes of the heart, and fluid dynamical models to describe \\nthe pressure and flow distribution in the blood vessel network. This allows us to gain deeper insight into the state of a variety of serious \\ncardiovascular diseases. The majority of recent research studies have focused on the forward problem: developing flexible mathematical \\nmodels and robust numerical simulation procedures to match characteristics of physiological target data, and the inverse problem: inferring \\nmodel parameters from cardiac physiological data with reliable uncertainty quantification. However, when connecting mathematical model \\npredictions and statistical inference to the clinical decision process, new challenges arise. This paper briefly discusses the complications \\nthat potentially result from closed-loop effects, and the model extensions that are required to reduce the ensuing bias.\",\"PeriodicalId\":302827,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Statistics: Theory and Applications\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Statistics: Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/icsta20.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Statistics: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icsta20.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们最近在定量心血管生理学和病理生理学方面看到了令人印象深刻的方法学发展,包括心脏机械和电生理过程的新颖数学模型,以及描述血管网络中压力和流量分布的流体动力学模型。这使我们能够更深入地了解各种严重心血管疾病的状态。最近的研究主要集中在正向问题:建立灵活的数学模型和鲁棒的数值模拟程序来匹配生理目标数据的特征;逆问题:通过可靠的不确定性量化从心脏生理数据推断模型参数。然而,当将数学模型预测和统计推断与临床决策过程联系起来时,出现了新的挑战。本文简要地讨论了闭环效应可能导致的复杂性,以及为减少随之而来的偏差所需要的模型扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed-loop effects in cardiovascular clinical decision support
We have recently seen impressive methodological developments in quantitative cardiovascular physiology and pathophysiology, with novel mathematical models for the mechanical and electrophysiological processes of the heart, and fluid dynamical models to describe the pressure and flow distribution in the blood vessel network. This allows us to gain deeper insight into the state of a variety of serious cardiovascular diseases. The majority of recent research studies have focused on the forward problem: developing flexible mathematical models and robust numerical simulation procedures to match characteristics of physiological target data, and the inverse problem: inferring model parameters from cardiac physiological data with reliable uncertainty quantification. However, when connecting mathematical model predictions and statistical inference to the clinical decision process, new challenges arise. This paper briefly discusses the complications that potentially result from closed-loop effects, and the model extensions that are required to reduce the ensuing bias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信