PLANTAE:基于物联网的精准农业预测平台

M. Hossam, Mohamed Kamal, M. Moawad, Mohamed Maher, Mohamed Salah, Youssef Abady, A. Hesham, Ahmed K. F. Khattab
{"title":"PLANTAE:基于物联网的精准农业预测平台","authors":"M. Hossam, Mohamed Kamal, M. Moawad, Mohamed Maher, Mohamed Salah, Youssef Abady, A. Hesham, Ahmed K. F. Khattab","doi":"10.1109/JEC-ECC.2018.8679571","DOIUrl":null,"url":null,"abstract":"This paper presents an Internet of Things (IoT) predictive platform for precision agriculture. The proposed platform aims to improve the productivity of crops through auto-controlling the plantation environment at low cost. Furthermore, the platform uses machine learning to predict plant diseases by implementing deep learning algorithms that extract hidden knowledge from the leaves' images to produce a model to achieve the highest possible accuracy of diseases classification. The platform consists of three layers. The first layer collects the needed information and applies the required actions. The second layer provides connectivity to the Internet. The last layer stores data, analyzes it, and makes it accessible to authorized users.","PeriodicalId":197824,"journal":{"name":"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"PLANTAE: An IoT-Based Predictive Platform for Precision Agriculture\",\"authors\":\"M. Hossam, Mohamed Kamal, M. Moawad, Mohamed Maher, Mohamed Salah, Youssef Abady, A. Hesham, Ahmed K. F. Khattab\",\"doi\":\"10.1109/JEC-ECC.2018.8679571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an Internet of Things (IoT) predictive platform for precision agriculture. The proposed platform aims to improve the productivity of crops through auto-controlling the plantation environment at low cost. Furthermore, the platform uses machine learning to predict plant diseases by implementing deep learning algorithms that extract hidden knowledge from the leaves' images to produce a model to achieve the highest possible accuracy of diseases classification. The platform consists of three layers. The first layer collects the needed information and applies the required actions. The second layer provides connectivity to the Internet. The last layer stores data, analyzes it, and makes it accessible to authorized users.\",\"PeriodicalId\":197824,\"journal\":{\"name\":\"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JEC-ECC.2018.8679571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEC-ECC.2018.8679571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种面向精准农业的物联网(IoT)预测平台。提出的平台旨在通过低成本自动控制种植环境来提高作物的生产力。此外,该平台利用机器学习来预测植物疾病,通过实施深度学习算法,从叶子图像中提取隐藏的知识,产生一个模型,以实现疾病分类的最高准确性。平台由三层组成。第一层收集所需的信息并应用所需的操作。第二层提供与Internet的连接。最后一层存储数据,分析数据,并使授权用户可以访问数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PLANTAE: An IoT-Based Predictive Platform for Precision Agriculture
This paper presents an Internet of Things (IoT) predictive platform for precision agriculture. The proposed platform aims to improve the productivity of crops through auto-controlling the plantation environment at low cost. Furthermore, the platform uses machine learning to predict plant diseases by implementing deep learning algorithms that extract hidden knowledge from the leaves' images to produce a model to achieve the highest possible accuracy of diseases classification. The platform consists of three layers. The first layer collects the needed information and applies the required actions. The second layer provides connectivity to the Internet. The last layer stores data, analyzes it, and makes it accessible to authorized users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信