图的开填充细分数

Gayathri Chelladurai, Karuppasamy Kalimuthu, Saravanakumar Soundararajan
{"title":"图的开填充细分数","authors":"Gayathri Chelladurai, Karuppasamy Kalimuthu, Saravanakumar Soundararajan","doi":"10.1142/s1793830922501774","DOIUrl":null,"url":null,"abstract":"A nonempty set [Formula: see text] of a graph [Formula: see text] is an open packing set of [Formula: see text] if no two vertices of [Formula: see text] have a common neighbor in [Formula: see text]. The maximum cardinality of an open packing set is called the open packing number of [Formula: see text] and is denoted by [Formula: see text]. The open packing subdivision number [Formula: see text] is the minimum number of edges in [Formula: see text] that must be subdivided (each edge in [Formula: see text] can be subdivided at most once) in order to increase the open packing number. In this paper, we initiate a study on this parameter.","PeriodicalId":342835,"journal":{"name":"Discret. Math. Algorithms Appl.","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open packing subdivision number of graphs\",\"authors\":\"Gayathri Chelladurai, Karuppasamy Kalimuthu, Saravanakumar Soundararajan\",\"doi\":\"10.1142/s1793830922501774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonempty set [Formula: see text] of a graph [Formula: see text] is an open packing set of [Formula: see text] if no two vertices of [Formula: see text] have a common neighbor in [Formula: see text]. The maximum cardinality of an open packing set is called the open packing number of [Formula: see text] and is denoted by [Formula: see text]. The open packing subdivision number [Formula: see text] is the minimum number of edges in [Formula: see text] that must be subdivided (each edge in [Formula: see text] can be subdivided at most once) in order to increase the open packing number. In this paper, we initiate a study on this parameter.\",\"PeriodicalId\":342835,\"journal\":{\"name\":\"Discret. Math. Algorithms Appl.\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Algorithms Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830922501774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Algorithms Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830922501774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图[公式:见文]的非空集[公式:见文]是[公式:见文]的开放包装集[公式:见文],如果[公式:见文]的两个顶点在[公式:见文]中没有共同的邻居。开放装箱集的最大基数称为[公式:见文]的开放装箱数,用[公式:见文]表示。开放装箱细分数[公式:见文]是[公式:见文]中必须细分的最小边数([公式:见文]中的每条边最多只能细分一次),以增加开放装箱数。本文对该参数进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Open packing subdivision number of graphs
A nonempty set [Formula: see text] of a graph [Formula: see text] is an open packing set of [Formula: see text] if no two vertices of [Formula: see text] have a common neighbor in [Formula: see text]. The maximum cardinality of an open packing set is called the open packing number of [Formula: see text] and is denoted by [Formula: see text]. The open packing subdivision number [Formula: see text] is the minimum number of edges in [Formula: see text] that must be subdivided (each edge in [Formula: see text] can be subdivided at most once) in order to increase the open packing number. In this paper, we initiate a study on this parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信