NS-KWS:近传感器处理架构和低精度GRU的联合优化,用于始终在线的关键字识别

Qin Li, Sheng Lin, Changlu Liu, Yidong Liu, F. Qiao, Yanzhi Wang, Huazhong Yang
{"title":"NS-KWS:近传感器处理架构和低精度GRU的联合优化,用于始终在线的关键字识别","authors":"Qin Li, Sheng Lin, Changlu Liu, Yidong Liu, F. Qiao, Yanzhi Wang, Huazhong Yang","doi":"10.1145/3370748.3407001","DOIUrl":null,"url":null,"abstract":"Keyword spotting (KWS) is a crucial front-end module in the whole speech interaction system. The always-on KWS module detects input words, then activates the energy-consuming complex backend system when keywords are detected. The performance of the KWS determines the standby performance of the whole system and the conventional KWS module encounters the power consumption bottleneck problem of the data conversion near the microphone sensor. In this paper, we propose an energy-efficient near-sensor processing architecture for always-on KWS, which could enhance continuous perception of the whole speech interaction system. By implementing the keyword detection in the analog domain after the microphone sensor, this architecture avoids energy-consuming data converter and achieves faster speed than conventional realizations. In addition, we propose a lightweight gated recurrent unit (GRU) with negligible accuracy loss to ensure the recognition performance. We also implement and fabricate the proposed KWS system with the CMOS 0.18μm process. In the system-view evaluation results, the hardware-software co-design architecture achieves 65.6% energy consumption saving and 71 times speed up than state of the art.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"NS-KWS: joint optimization of near-sensor processing architecture and low-precision GRU for always-on keyword spotting\",\"authors\":\"Qin Li, Sheng Lin, Changlu Liu, Yidong Liu, F. Qiao, Yanzhi Wang, Huazhong Yang\",\"doi\":\"10.1145/3370748.3407001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keyword spotting (KWS) is a crucial front-end module in the whole speech interaction system. The always-on KWS module detects input words, then activates the energy-consuming complex backend system when keywords are detected. The performance of the KWS determines the standby performance of the whole system and the conventional KWS module encounters the power consumption bottleneck problem of the data conversion near the microphone sensor. In this paper, we propose an energy-efficient near-sensor processing architecture for always-on KWS, which could enhance continuous perception of the whole speech interaction system. By implementing the keyword detection in the analog domain after the microphone sensor, this architecture avoids energy-consuming data converter and achieves faster speed than conventional realizations. In addition, we propose a lightweight gated recurrent unit (GRU) with negligible accuracy loss to ensure the recognition performance. We also implement and fabricate the proposed KWS system with the CMOS 0.18μm process. In the system-view evaluation results, the hardware-software co-design architecture achieves 65.6% energy consumption saving and 71 times speed up than state of the art.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3407001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3407001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

关键词识别是整个语音交互系统的关键前端模块。始终在线的KWS模块检测输入的单词,然后在检测到关键字时激活消耗能量的复杂后端系统。KWS的性能决定了整个系统的待机性能,传统的KWS模块遇到了麦克风传感器附近数据转换的功耗瓶颈问题。在本文中,我们提出了一种节能的近传感器处理架构,用于始终在线的语音交互系统,可以增强整个语音交互系统的连续感知。该架构通过在麦克风传感器后实现模拟域的关键字检测,避免了数据转换器的耗能,实现了比传统实现更快的速度。此外,我们提出了一种轻量级的门控循环单元(GRU),其精度损失可以忽略不计,以确保识别性能。我们还利用CMOS 0.18μm工艺实现并制造了所提出的KWS系统。在系统视图评估结果中,软硬件协同设计架构实现了65.6%的能耗节约和71倍的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NS-KWS: joint optimization of near-sensor processing architecture and low-precision GRU for always-on keyword spotting
Keyword spotting (KWS) is a crucial front-end module in the whole speech interaction system. The always-on KWS module detects input words, then activates the energy-consuming complex backend system when keywords are detected. The performance of the KWS determines the standby performance of the whole system and the conventional KWS module encounters the power consumption bottleneck problem of the data conversion near the microphone sensor. In this paper, we propose an energy-efficient near-sensor processing architecture for always-on KWS, which could enhance continuous perception of the whole speech interaction system. By implementing the keyword detection in the analog domain after the microphone sensor, this architecture avoids energy-consuming data converter and achieves faster speed than conventional realizations. In addition, we propose a lightweight gated recurrent unit (GRU) with negligible accuracy loss to ensure the recognition performance. We also implement and fabricate the proposed KWS system with the CMOS 0.18μm process. In the system-view evaluation results, the hardware-software co-design architecture achieves 65.6% energy consumption saving and 71 times speed up than state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信