领域自适应方法在天气数据挖掘中的应用

Yang Wang, Yuanzhe Shi
{"title":"领域自适应方法在天气数据挖掘中的应用","authors":"Yang Wang, Yuanzhe Shi","doi":"10.1145/3268866.3268879","DOIUrl":null,"url":null,"abstract":"The fast increase in the availability of weather data from various sensors and weather stations allows weather data mining to achieve much higher accuracy over time, serving for important economic and socioeconomic purposes. However, the availability and sparsity of weather data differs drastically for geologically separated locations and there exists wide across domain differences for different sources, resulting in various accuracy in predicting the weather for target locations with different weather patterns. This paper applies domain adaptation approach for weather classification, where a system is trained from one source domain but deployed on another target domain. This methodology outperforms other two alternative methods, showing lower misclassification rate than using only target domain or naïve combination of both target and source domain ignoring cross-domain differences. This work provides a framework for future weather data mining and encourages the domain adaptation approach in other applications in data mining with wide cross-domain differences in general.","PeriodicalId":285628,"journal":{"name":"Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Application of Domain Adaptation Approach for Weather Data Mining\",\"authors\":\"Yang Wang, Yuanzhe Shi\",\"doi\":\"10.1145/3268866.3268879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fast increase in the availability of weather data from various sensors and weather stations allows weather data mining to achieve much higher accuracy over time, serving for important economic and socioeconomic purposes. However, the availability and sparsity of weather data differs drastically for geologically separated locations and there exists wide across domain differences for different sources, resulting in various accuracy in predicting the weather for target locations with different weather patterns. This paper applies domain adaptation approach for weather classification, where a system is trained from one source domain but deployed on another target domain. This methodology outperforms other two alternative methods, showing lower misclassification rate than using only target domain or naïve combination of both target and source domain ignoring cross-domain differences. This work provides a framework for future weather data mining and encourages the domain adaptation approach in other applications in data mining with wide cross-domain differences in general.\",\"PeriodicalId\":285628,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3268866.3268879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3268866.3268879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

来自各种传感器和气象站的天气数据的可用性迅速增加,使得天气数据挖掘随着时间的推移可以达到更高的精度,为重要的经济和社会经济目的服务。然而,不同地理位置的天气数据的可用性和稀疏性差异很大,并且不同来源的数据存在较大的跨域差异,导致不同天气模式的目标位置的天气预测精度不同。本文将领域适应方法应用于天气分类,其中系统从一个源领域训练,但部署在另一个目标领域。该方法优于其他两种替代方法,与仅使用目标域或忽略跨域差异的目标域和源域的naïve组合相比,显示出更低的误分类率。这项工作为未来的天气数据挖掘提供了一个框架,并鼓励在数据挖掘的其他应用中采用领域适应方法,这些应用通常具有广泛的跨领域差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Domain Adaptation Approach for Weather Data Mining
The fast increase in the availability of weather data from various sensors and weather stations allows weather data mining to achieve much higher accuracy over time, serving for important economic and socioeconomic purposes. However, the availability and sparsity of weather data differs drastically for geologically separated locations and there exists wide across domain differences for different sources, resulting in various accuracy in predicting the weather for target locations with different weather patterns. This paper applies domain adaptation approach for weather classification, where a system is trained from one source domain but deployed on another target domain. This methodology outperforms other two alternative methods, showing lower misclassification rate than using only target domain or naïve combination of both target and source domain ignoring cross-domain differences. This work provides a framework for future weather data mining and encourages the domain adaptation approach in other applications in data mining with wide cross-domain differences in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信