{"title":"AnalogVNN:光子模拟神经网络的全模块化框架","authors":"Vivswan Shah, N. Youngblood","doi":"10.1109/IPC53466.2022.9975607","DOIUrl":null,"url":null,"abstract":"Optimal hyperparameters and inference accuracy for analog-based deep learning hardware is highly dependent on system architecture and component noise. We present AnalogVNN as a fully modular framework to easily model and train arbitrary analog photonic neural networks using the simple modular layer structures of PyTorch.","PeriodicalId":202839,"journal":{"name":"2022 IEEE Photonics Conference (IPC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AnalogVNN: A Fully Modular Framework for Photonic Analog Neural Networks\",\"authors\":\"Vivswan Shah, N. Youngblood\",\"doi\":\"10.1109/IPC53466.2022.9975607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal hyperparameters and inference accuracy for analog-based deep learning hardware is highly dependent on system architecture and component noise. We present AnalogVNN as a fully modular framework to easily model and train arbitrary analog photonic neural networks using the simple modular layer structures of PyTorch.\",\"PeriodicalId\":202839,\"journal\":{\"name\":\"2022 IEEE Photonics Conference (IPC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Photonics Conference (IPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPC53466.2022.9975607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPC53466.2022.9975607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AnalogVNN: A Fully Modular Framework for Photonic Analog Neural Networks
Optimal hyperparameters and inference accuracy for analog-based deep learning hardware is highly dependent on system architecture and component noise. We present AnalogVNN as a fully modular framework to easily model and train arbitrary analog photonic neural networks using the simple modular layer structures of PyTorch.