基于深度神经网络集成的股票市场预测

Lu Sin Chong, K. Lim, C. Lee
{"title":"基于深度神经网络集成的股票市场预测","authors":"Lu Sin Chong, K. Lim, C. Lee","doi":"10.1109/IICAIET49801.2020.9257864","DOIUrl":null,"url":null,"abstract":"Stock market prediction has been a challenging task for machine due to time series analysis is needed. In recent years, deep neural networks have been widely applied in many financial time series tasks. Typically, deep neural networks require huge amount of data samples to train a good model. However, the data samples for stock market is limited which caused the networks prone to overfitting. In view of this, this paper leverages deep neural networks with ensemble learning to address this problem. We propose ensemble of Convolutional Neural Network (CNN), Long Short Term Memory (LSTM), and 1DConvNet with LSTM (Conv1DLSTM) to predict the stock market price, named EnsembleDNNs. The performance of the proposed EnsembleDNNs is evaluated with stock market of several companies. The experiment results show encouraging performance as compared to other baselines.","PeriodicalId":300885,"journal":{"name":"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Stock Market Prediction using Ensemble of Deep Neural Networks\",\"authors\":\"Lu Sin Chong, K. Lim, C. Lee\",\"doi\":\"10.1109/IICAIET49801.2020.9257864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock market prediction has been a challenging task for machine due to time series analysis is needed. In recent years, deep neural networks have been widely applied in many financial time series tasks. Typically, deep neural networks require huge amount of data samples to train a good model. However, the data samples for stock market is limited which caused the networks prone to overfitting. In view of this, this paper leverages deep neural networks with ensemble learning to address this problem. We propose ensemble of Convolutional Neural Network (CNN), Long Short Term Memory (LSTM), and 1DConvNet with LSTM (Conv1DLSTM) to predict the stock market price, named EnsembleDNNs. The performance of the proposed EnsembleDNNs is evaluated with stock market of several companies. The experiment results show encouraging performance as compared to other baselines.\",\"PeriodicalId\":300885,\"journal\":{\"name\":\"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICAIET49801.2020.9257864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET49801.2020.9257864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

由于需要进行时间序列分析,股票市场预测一直是一项具有挑战性的任务。近年来,深度神经网络在许多金融时间序列任务中得到了广泛的应用。通常,深度神经网络需要大量的数据样本来训练一个好的模型。然而,由于股票市场的数据样本有限,导致网络容易出现过拟合。鉴于此,本文利用集成学习的深度神经网络来解决这一问题。我们提出卷积神经网络(CNN)、长短期记忆(LSTM)和带有LSTM (Conv1DLSTM)的1DConvNet的集成来预测股票市场价格,命名为EnsembleDNNs。最后,用几家公司的股票市场对所提出的集成神经网络的性能进行了评价。与其他基线相比,实验结果显示了令人鼓舞的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stock Market Prediction using Ensemble of Deep Neural Networks
Stock market prediction has been a challenging task for machine due to time series analysis is needed. In recent years, deep neural networks have been widely applied in many financial time series tasks. Typically, deep neural networks require huge amount of data samples to train a good model. However, the data samples for stock market is limited which caused the networks prone to overfitting. In view of this, this paper leverages deep neural networks with ensemble learning to address this problem. We propose ensemble of Convolutional Neural Network (CNN), Long Short Term Memory (LSTM), and 1DConvNet with LSTM (Conv1DLSTM) to predict the stock market price, named EnsembleDNNs. The performance of the proposed EnsembleDNNs is evaluated with stock market of several companies. The experiment results show encouraging performance as compared to other baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信