{"title":"B-DRRN:一种基于块信息约束的深度递归残差网络","authors":"Hoang Man Trinh, Jinjia Zhou","doi":"10.1109/PCS48520.2019.8954521","DOIUrl":null,"url":null,"abstract":"Although the video compression ratio nowadays becomes higher, the video coders such as H.264/AVC, H.265/HEVC, H.266/VVC always suffer from the video artifacts. In this paper, we design a neural network to enhance the quality of the compressed frame by leveraging the block information, called B-DRRN (Deep Recursive Residual Network with Block information). Firstly, an extra network branch is designed for leveraging the block information of the coding unit (CU). Moreover, to avoid a great increase in the network size, Recursive Residual structure and sharing weight techniques are applied. We also conduct a new large-scale dataset with 209,152 training samples. Experimental results show that the proposed B-DRRN can reduce 6.16% BD-rate compared to HEVC standard. After efficiently adding an extra network branch, this work can improve the performance of the main network without increasing any memory for storing.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"B-DRRN: A Block Information Constrained Deep Recursive Residual Network for Video Compression Artifacts Reduction\",\"authors\":\"Hoang Man Trinh, Jinjia Zhou\",\"doi\":\"10.1109/PCS48520.2019.8954521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the video compression ratio nowadays becomes higher, the video coders such as H.264/AVC, H.265/HEVC, H.266/VVC always suffer from the video artifacts. In this paper, we design a neural network to enhance the quality of the compressed frame by leveraging the block information, called B-DRRN (Deep Recursive Residual Network with Block information). Firstly, an extra network branch is designed for leveraging the block information of the coding unit (CU). Moreover, to avoid a great increase in the network size, Recursive Residual structure and sharing weight techniques are applied. We also conduct a new large-scale dataset with 209,152 training samples. Experimental results show that the proposed B-DRRN can reduce 6.16% BD-rate compared to HEVC standard. After efficiently adding an extra network branch, this work can improve the performance of the main network without increasing any memory for storing.\",\"PeriodicalId\":237809,\"journal\":{\"name\":\"2019 Picture Coding Symposium (PCS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS48520.2019.8954521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
B-DRRN: A Block Information Constrained Deep Recursive Residual Network for Video Compression Artifacts Reduction
Although the video compression ratio nowadays becomes higher, the video coders such as H.264/AVC, H.265/HEVC, H.266/VVC always suffer from the video artifacts. In this paper, we design a neural network to enhance the quality of the compressed frame by leveraging the block information, called B-DRRN (Deep Recursive Residual Network with Block information). Firstly, an extra network branch is designed for leveraging the block information of the coding unit (CU). Moreover, to avoid a great increase in the network size, Recursive Residual structure and sharing weight techniques are applied. We also conduct a new large-scale dataset with 209,152 training samples. Experimental results show that the proposed B-DRRN can reduce 6.16% BD-rate compared to HEVC standard. After efficiently adding an extra network branch, this work can improve the performance of the main network without increasing any memory for storing.