{"title":"非对称外部内存模型的下限","authors":"R. Jacob, Nodari Sitchinava","doi":"10.1145/3087556.3087583","DOIUrl":null,"url":null,"abstract":"Motivated by the asymmetric read and write costs of emerging non-volatile memory technologies, we study lower bounds for the problems of sorting, permuting and multiplying a sparse matrix by a dense vector in the asymmetric external memory model (AEM). Given an AEM with internal (symmetric) memory of size M, transfers between symmetric and asymmetric memory in blocks of size B and the ratio ω between write and read costs, we show Ω(min (N, ωN/B logω M/B N/B) lower bound for the cost of permuting N input elements. This lower bound also applies to the problem of sorting N elements. This proves that the existing sorting algorithms in the AEM model are optimal to within a constant factor for reasonable ranges of parameters N, M, B, and ω. We also show a lower bound of Ω(min {H, ω H/B logω M/B N/ max{δ ,M}}) for the cost of multiplying an N x N matrix with at most H= δ N non-empty entries by a vector with N elements.","PeriodicalId":162994,"journal":{"name":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Lower Bounds in the Asymmetric External Memory Model\",\"authors\":\"R. Jacob, Nodari Sitchinava\",\"doi\":\"10.1145/3087556.3087583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the asymmetric read and write costs of emerging non-volatile memory technologies, we study lower bounds for the problems of sorting, permuting and multiplying a sparse matrix by a dense vector in the asymmetric external memory model (AEM). Given an AEM with internal (symmetric) memory of size M, transfers between symmetric and asymmetric memory in blocks of size B and the ratio ω between write and read costs, we show Ω(min (N, ωN/B logω M/B N/B) lower bound for the cost of permuting N input elements. This lower bound also applies to the problem of sorting N elements. This proves that the existing sorting algorithms in the AEM model are optimal to within a constant factor for reasonable ranges of parameters N, M, B, and ω. We also show a lower bound of Ω(min {H, ω H/B logω M/B N/ max{δ ,M}}) for the cost of multiplying an N x N matrix with at most H= δ N non-empty entries by a vector with N elements.\",\"PeriodicalId\":162994,\"journal\":{\"name\":\"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3087556.3087583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087556.3087583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lower Bounds in the Asymmetric External Memory Model
Motivated by the asymmetric read and write costs of emerging non-volatile memory technologies, we study lower bounds for the problems of sorting, permuting and multiplying a sparse matrix by a dense vector in the asymmetric external memory model (AEM). Given an AEM with internal (symmetric) memory of size M, transfers between symmetric and asymmetric memory in blocks of size B and the ratio ω between write and read costs, we show Ω(min (N, ωN/B logω M/B N/B) lower bound for the cost of permuting N input elements. This lower bound also applies to the problem of sorting N elements. This proves that the existing sorting algorithms in the AEM model are optimal to within a constant factor for reasonable ranges of parameters N, M, B, and ω. We also show a lower bound of Ω(min {H, ω H/B logω M/B N/ max{δ ,M}}) for the cost of multiplying an N x N matrix with at most H= δ N non-empty entries by a vector with N elements.