视频帧中人脸识别的质量指标分析

Dominik Sopiak, Zuzana Bukovcikova, M. Oravec, J. Pavlovičová
{"title":"视频帧中人脸识别的质量指标分析","authors":"Dominik Sopiak, Zuzana Bukovcikova, M. Oravec, J. Pavlovičová","doi":"10.23919/ELMAR.2018.8534652","DOIUrl":null,"url":null,"abstract":"In this paper we examine the effects of various environmental and camera constraints on the accuracy of deep-learning-based face recognition system. More specifically the paper takes a look on the decline of accuracy of the famous ResNet architecture trained on “pretty” images of celebrities, when it is used on stills from video sequences from real-life television broadcast. It introduces a number of different quality indicators (connected to the sharpness of image, the expression of subject and image contrast) and describes their effect on the results of the convolutional network. It attempts to give recommendations on the ideal values for these indicators in order to choose the best candidate from the video sequence on which to perform the recognition algorithm.","PeriodicalId":175742,"journal":{"name":"2018 International Symposium ELMAR","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Analysis of Quality Indicators on Face Recognition in Video Frames\",\"authors\":\"Dominik Sopiak, Zuzana Bukovcikova, M. Oravec, J. Pavlovičová\",\"doi\":\"10.23919/ELMAR.2018.8534652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we examine the effects of various environmental and camera constraints on the accuracy of deep-learning-based face recognition system. More specifically the paper takes a look on the decline of accuracy of the famous ResNet architecture trained on “pretty” images of celebrities, when it is used on stills from video sequences from real-life television broadcast. It introduces a number of different quality indicators (connected to the sharpness of image, the expression of subject and image contrast) and describes their effect on the results of the convolutional network. It attempts to give recommendations on the ideal values for these indicators in order to choose the best candidate from the video sequence on which to perform the recognition algorithm.\",\"PeriodicalId\":175742,\"journal\":{\"name\":\"2018 International Symposium ELMAR\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Symposium ELMAR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ELMAR.2018.8534652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium ELMAR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELMAR.2018.8534652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了各种环境和相机约束对基于深度学习的人脸识别系统准确性的影响。更具体地说,这篇论文研究了著名的ResNet架构在名人“漂亮”图像上训练的准确性下降,当它被用于现实生活中电视广播的视频序列的剧照时。它介绍了一些不同的质量指标(与图像的清晰度、主题的表达和图像对比度有关),并描述了它们对卷积网络结果的影响。它试图对这些指标的理想值给出建议,以便从视频序列中选择最佳候选来执行识别算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Analysis of Quality Indicators on Face Recognition in Video Frames
In this paper we examine the effects of various environmental and camera constraints on the accuracy of deep-learning-based face recognition system. More specifically the paper takes a look on the decline of accuracy of the famous ResNet architecture trained on “pretty” images of celebrities, when it is used on stills from video sequences from real-life television broadcast. It introduces a number of different quality indicators (connected to the sharpness of image, the expression of subject and image contrast) and describes their effect on the results of the convolutional network. It attempts to give recommendations on the ideal values for these indicators in order to choose the best candidate from the video sequence on which to perform the recognition algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信