基于深度学习的热带气旋形成现场分析框架

Abir Mukherjee, Preeti Malakar
{"title":"基于深度学习的热带气旋形成现场分析框架","authors":"Abir Mukherjee, Preeti Malakar","doi":"10.1109/HiPC56025.2022.00032","DOIUrl":null,"url":null,"abstract":"Tropical cyclone is one of the most violent natural disasters causing massive devastation. Accurate forecasting of cyclones with high lead times is an important problem. We propose a framework to predict tropical cyclogenesis (i.e. cyclone formation). This framework executes along with a parallel weather simulation model (WRF) and analyzes the simulation output as soon as they are generated. Our framework has two major components – a trigger function and a deep predictive model. The trigger function acts as a basic filter to identify cyclones from non-cyclones. The proposed deep learning model is based on convolutional neural networks (CNNs). The best track data from Indian Meteorological Department (IMD) is used as a reference for labeling data points into disturbances and tropical cyclones. The framework achieves a probability of detection (POD) value of approximately 95% with a false alarm ratio (FAR) of 21.69% overall. The predictions made by the framework have a lead time of up to 150 hours from the time that a disturbance transforms into a tropical cyclone.","PeriodicalId":119363,"journal":{"name":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning-Based In Situ Analysis Framework for Tropical Cyclogenesis Prediction\",\"authors\":\"Abir Mukherjee, Preeti Malakar\",\"doi\":\"10.1109/HiPC56025.2022.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tropical cyclone is one of the most violent natural disasters causing massive devastation. Accurate forecasting of cyclones with high lead times is an important problem. We propose a framework to predict tropical cyclogenesis (i.e. cyclone formation). This framework executes along with a parallel weather simulation model (WRF) and analyzes the simulation output as soon as they are generated. Our framework has two major components – a trigger function and a deep predictive model. The trigger function acts as a basic filter to identify cyclones from non-cyclones. The proposed deep learning model is based on convolutional neural networks (CNNs). The best track data from Indian Meteorological Department (IMD) is used as a reference for labeling data points into disturbances and tropical cyclones. The framework achieves a probability of detection (POD) value of approximately 95% with a false alarm ratio (FAR) of 21.69% overall. The predictions made by the framework have a lead time of up to 150 hours from the time that a disturbance transforms into a tropical cyclone.\",\"PeriodicalId\":119363,\"journal\":{\"name\":\"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"volume\":\"259 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC56025.2022.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC56025.2022.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热带气旋是造成巨大破坏的最猛烈的自然灾害之一。准确预报提前期较长的气旋是一个重要问题。我们提出了一个预测热带气旋形成(即气旋形成)的框架。此框架与并行天气模拟模型(WRF)一起执行,并在模拟输出生成后立即对其进行分析。我们的框架有两个主要组成部分——一个触发函数和一个深度预测模型。触发函数作为一个基本的过滤器来识别气旋和非气旋。提出的深度学习模型基于卷积神经网络(cnn)。来自印度气象部门(IMD)的最佳轨迹数据被用作将数据点标记为扰动和热带气旋的参考。该框架的检测概率(POD)值约为95%,虚警率(FAR)为21.69%。从扰动转变为热带气旋开始,该框架所做的预测的提前时间可达150小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning-Based In Situ Analysis Framework for Tropical Cyclogenesis Prediction
Tropical cyclone is one of the most violent natural disasters causing massive devastation. Accurate forecasting of cyclones with high lead times is an important problem. We propose a framework to predict tropical cyclogenesis (i.e. cyclone formation). This framework executes along with a parallel weather simulation model (WRF) and analyzes the simulation output as soon as they are generated. Our framework has two major components – a trigger function and a deep predictive model. The trigger function acts as a basic filter to identify cyclones from non-cyclones. The proposed deep learning model is based on convolutional neural networks (CNNs). The best track data from Indian Meteorological Department (IMD) is used as a reference for labeling data points into disturbances and tropical cyclones. The framework achieves a probability of detection (POD) value of approximately 95% with a false alarm ratio (FAR) of 21.69% overall. The predictions made by the framework have a lead time of up to 150 hours from the time that a disturbance transforms into a tropical cyclone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信