Tao Wang, Pengxiao Liu, X. An, Yufeng Ke, Jinzhao Xu, Mingpeng Xu, Linghan Kong, Wentao Liu, Dong Ming
{"title":"提高p300拼写者在个体内部和个体之间表现的建模策略和空间过滤器","authors":"Tao Wang, Pengxiao Liu, X. An, Yufeng Ke, Jinzhao Xu, Mingpeng Xu, Linghan Kong, Wentao Liu, Dong Ming","doi":"10.1109/CIVEMSA45640.2019.9071607","DOIUrl":null,"url":null,"abstract":"In recent years, improving the performance of cross-individual brain-computer interfaces (BCI) has become a research hotspot. This paper proposes a within-individual model and two cross-individual models for P300 speller character recognition and uses canonical correlation analysis (CCA) spatial filter and task-related component analysis (TRCA) spatial filter to optimize the model. Those methods are compared in their performance to allow for an accurate classification of P300 speller. As a result, the best classification accuracy rate of the within-individual recognition model is 98.83%, and the best classification accuracy rate in cross-individual model is 85.09%.","PeriodicalId":293990,"journal":{"name":"2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling Strategies and Spatial Filters for Improving the Performance of P300-speller within and across Individuals\",\"authors\":\"Tao Wang, Pengxiao Liu, X. An, Yufeng Ke, Jinzhao Xu, Mingpeng Xu, Linghan Kong, Wentao Liu, Dong Ming\",\"doi\":\"10.1109/CIVEMSA45640.2019.9071607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, improving the performance of cross-individual brain-computer interfaces (BCI) has become a research hotspot. This paper proposes a within-individual model and two cross-individual models for P300 speller character recognition and uses canonical correlation analysis (CCA) spatial filter and task-related component analysis (TRCA) spatial filter to optimize the model. Those methods are compared in their performance to allow for an accurate classification of P300 speller. As a result, the best classification accuracy rate of the within-individual recognition model is 98.83%, and the best classification accuracy rate in cross-individual model is 85.09%.\",\"PeriodicalId\":293990,\"journal\":{\"name\":\"2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVEMSA45640.2019.9071607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA45640.2019.9071607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Strategies and Spatial Filters for Improving the Performance of P300-speller within and across Individuals
In recent years, improving the performance of cross-individual brain-computer interfaces (BCI) has become a research hotspot. This paper proposes a within-individual model and two cross-individual models for P300 speller character recognition and uses canonical correlation analysis (CCA) spatial filter and task-related component analysis (TRCA) spatial filter to optimize the model. Those methods are compared in their performance to allow for an accurate classification of P300 speller. As a result, the best classification accuracy rate of the within-individual recognition model is 98.83%, and the best classification accuracy rate in cross-individual model is 85.09%.