需求不确定条件下空箱重新定位的多场景模型

M. Di Francesco, M. Lai, P. Zuddas
{"title":"需求不确定条件下空箱重新定位的多场景模型","authors":"M. Di Francesco, M. Lai, P. Zuddas","doi":"10.1109/ICADLT.2013.6568466","DOIUrl":null,"url":null,"abstract":"This paper investigates the maritime repositioning of empty containers under uncertain demand. In order to consider data uncertainty, the problem is addressed by a stochastic programming approach, in which different scenarios are included in a multi-scenario optimization model and linked by non-anticipativity conditions. Numerical experiments show the benefits of multi-scenario solutions with respect to deterministic approaches, which consider only a single point forecast for each uncertain parameter.","PeriodicalId":269509,"journal":{"name":"2013 International Conference on Advanced Logistics and Transport","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A multi-scenario model for empty container repositioning under uncertain demand\",\"authors\":\"M. Di Francesco, M. Lai, P. Zuddas\",\"doi\":\"10.1109/ICADLT.2013.6568466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the maritime repositioning of empty containers under uncertain demand. In order to consider data uncertainty, the problem is addressed by a stochastic programming approach, in which different scenarios are included in a multi-scenario optimization model and linked by non-anticipativity conditions. Numerical experiments show the benefits of multi-scenario solutions with respect to deterministic approaches, which consider only a single point forecast for each uncertain parameter.\",\"PeriodicalId\":269509,\"journal\":{\"name\":\"2013 International Conference on Advanced Logistics and Transport\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Advanced Logistics and Transport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICADLT.2013.6568466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Advanced Logistics and Transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICADLT.2013.6568466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了需求不确定条件下的空箱海上重新定位问题。为了考虑数据的不确定性,采用随机规划方法,将不同的场景纳入多场景优化模型,并通过非预期条件将其联系起来。数值实验表明,与只考虑每个不确定参数的单点预测的确定性方法相比,多场景解具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-scenario model for empty container repositioning under uncertain demand
This paper investigates the maritime repositioning of empty containers under uncertain demand. In order to consider data uncertainty, the problem is addressed by a stochastic programming approach, in which different scenarios are included in a multi-scenario optimization model and linked by non-anticipativity conditions. Numerical experiments show the benefits of multi-scenario solutions with respect to deterministic approaches, which consider only a single point forecast for each uncertain parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信