森林砍伐监测的多时相遥感影像建模

D. Melati
{"title":"森林砍伐监测的多时相遥感影像建模","authors":"D. Melati","doi":"10.29122/ALAMI.V3I1.3368","DOIUrl":null,"url":null,"abstract":"Tropical rainforest in Indonesia faces critical issue related to deforestation. Human activities which convert forest cover into non-forest cover has been a major issue. In order to sustain the forest resources, monitoring on deforestation and forest cover prediction is necessary to be done. Remotely sensed data, Landsat images, with acquisition in 1996, 2000, and 2005 are used in this study. In this study area, forest cover decreased around 6 % in the period of 1996 - 2005. For the purpose of forest cover modelling, three model (i.e. Stochastic Markov Model, Cellullar Automata Markov (CA_Markov) Model, dan GEOMOD) were tested. Based upon the Kappa index, GEOMOD performed better with the highest Kappa index. Therefore, GEOMOD is recommended to forecast forest cover.","PeriodicalId":270402,"journal":{"name":"Jurnal Alami : Jurnal Teknologi Reduksi Risiko Bencana","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi Temporal Remotely Sensed Image Modelling For Deforestation Monitoring\",\"authors\":\"D. Melati\",\"doi\":\"10.29122/ALAMI.V3I1.3368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tropical rainforest in Indonesia faces critical issue related to deforestation. Human activities which convert forest cover into non-forest cover has been a major issue. In order to sustain the forest resources, monitoring on deforestation and forest cover prediction is necessary to be done. Remotely sensed data, Landsat images, with acquisition in 1996, 2000, and 2005 are used in this study. In this study area, forest cover decreased around 6 % in the period of 1996 - 2005. For the purpose of forest cover modelling, three model (i.e. Stochastic Markov Model, Cellullar Automata Markov (CA_Markov) Model, dan GEOMOD) were tested. Based upon the Kappa index, GEOMOD performed better with the highest Kappa index. Therefore, GEOMOD is recommended to forecast forest cover.\",\"PeriodicalId\":270402,\"journal\":{\"name\":\"Jurnal Alami : Jurnal Teknologi Reduksi Risiko Bencana\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Alami : Jurnal Teknologi Reduksi Risiko Bencana\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29122/ALAMI.V3I1.3368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Alami : Jurnal Teknologi Reduksi Risiko Bencana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29122/ALAMI.V3I1.3368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

印度尼西亚的热带雨林面临着与森林砍伐有关的关键问题。将森林覆盖转化为非森林覆盖的人类活动一直是一个主要问题。为了保证森林资源的永续发展,有必要进行森林砍伐监测和森林覆盖预测。本研究使用了1996年、2000年和2005年的Landsat遥感数据。1996 - 2005年,研究区森林覆盖率下降了约6%。以森林覆盖建模为目的,对随机马尔可夫模型(Stochastic Markov model)、元胞自动机马尔可夫模型(cellular Automata Markov model, CA_Markov)和dan GEOMOD三种模型进行了测试。基于Kappa指数,GEOMOD表现较好,Kappa指数最高。因此,建议使用GEOMOD进行森林覆盖预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi Temporal Remotely Sensed Image Modelling For Deforestation Monitoring
Tropical rainforest in Indonesia faces critical issue related to deforestation. Human activities which convert forest cover into non-forest cover has been a major issue. In order to sustain the forest resources, monitoring on deforestation and forest cover prediction is necessary to be done. Remotely sensed data, Landsat images, with acquisition in 1996, 2000, and 2005 are used in this study. In this study area, forest cover decreased around 6 % in the period of 1996 - 2005. For the purpose of forest cover modelling, three model (i.e. Stochastic Markov Model, Cellullar Automata Markov (CA_Markov) Model, dan GEOMOD) were tested. Based upon the Kappa index, GEOMOD performed better with the highest Kappa index. Therefore, GEOMOD is recommended to forecast forest cover.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信