一种基于特定分类结构生成聚类算法的新框架

Hossein Karami, M. Taheri
{"title":"一种基于特定分类结构生成聚类算法的新框架","authors":"Hossein Karami, M. Taheri","doi":"10.1109/AISP.2017.8324081","DOIUrl":null,"url":null,"abstract":"Classification and clustering are two main tasks of pattern recognition. Ensemble of classifiers or clustering algorithms is one of the ways to provide a robust, accurate and stable final result. In addition, clustering may be used to improve the performance of a classifier or vice versa. In this paper, a novel framework is proposed as an ensemble of classification and clustering algorithms. In this framework, clustering can be done based on the structure of a base classifier. By use of this framework, new clustering methods can be generated, or some classic ones may be regenerated considering underlying theory of a particular classifier. As a sample of the proposed framework, Parzen windows classifier is used as the base classifier to generate a variety of clustering algorithms including some well-known methods, complete and single linkage.","PeriodicalId":386952,"journal":{"name":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel framework to generate clustering algorithms based on a particular classification structure\",\"authors\":\"Hossein Karami, M. Taheri\",\"doi\":\"10.1109/AISP.2017.8324081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification and clustering are two main tasks of pattern recognition. Ensemble of classifiers or clustering algorithms is one of the ways to provide a robust, accurate and stable final result. In addition, clustering may be used to improve the performance of a classifier or vice versa. In this paper, a novel framework is proposed as an ensemble of classification and clustering algorithms. In this framework, clustering can be done based on the structure of a base classifier. By use of this framework, new clustering methods can be generated, or some classic ones may be regenerated considering underlying theory of a particular classifier. As a sample of the proposed framework, Parzen windows classifier is used as the base classifier to generate a variety of clustering algorithms including some well-known methods, complete and single linkage.\",\"PeriodicalId\":386952,\"journal\":{\"name\":\"2017 Artificial Intelligence and Signal Processing Conference (AISP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Artificial Intelligence and Signal Processing Conference (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP.2017.8324081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2017.8324081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

分类和聚类是模式识别的两个主要任务。集成分类器或聚类算法是提供鲁棒、准确和稳定的最终结果的方法之一。此外,聚类可以用来提高分类器的性能,反之亦然。本文提出了一种新的框架,作为分类和聚类算法的集成。在这个框架中,可以根据基本分类器的结构进行聚类。通过使用该框架,可以生成新的聚类方法,或者根据特定分类器的底层理论再生一些经典的聚类方法。作为该框架的一个样本,以Parzen窗口分类器为基础分类器,生成了多种聚类算法,包括一些知名的方法、完整链接和单链接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel framework to generate clustering algorithms based on a particular classification structure
Classification and clustering are two main tasks of pattern recognition. Ensemble of classifiers or clustering algorithms is one of the ways to provide a robust, accurate and stable final result. In addition, clustering may be used to improve the performance of a classifier or vice versa. In this paper, a novel framework is proposed as an ensemble of classification and clustering algorithms. In this framework, clustering can be done based on the structure of a base classifier. By use of this framework, new clustering methods can be generated, or some classic ones may be regenerated considering underlying theory of a particular classifier. As a sample of the proposed framework, Parzen windows classifier is used as the base classifier to generate a variety of clustering algorithms including some well-known methods, complete and single linkage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信