基于深度学习的视盘和视杯分割

Pengzhi Qin, Linyan Wang, Hongbing Lv
{"title":"基于深度学习的视盘和视杯分割","authors":"Pengzhi Qin, Linyan Wang, Hongbing Lv","doi":"10.1109/ITNEC.2019.8729455","DOIUrl":null,"url":null,"abstract":"Glaucoma is a disease that damages eye’s optic nerve, and it is the leading cause of global irreversible blindness. Optic nerve head (ONH) assessment is a convenient way to detect glaucoma early and cup to disc ratio (CDR) is an important index for ONH evaluation. Thus, it is a fundamental task to segment OD and OC from the fundus images automatically and accurately. Most existing method segment them separately, and rely on hand-crafted visual feature from fundus image. This paper presents universal approach for automatic optic disc and cup segmentation, which is based on deep learning, namely, modification of fully convolutional network (FCN) and the Inception building blocks in GoogleNet. For improving the segmentation performance further, we also introduce new optic disc localization and pre-processing method. Our experiments show that our method achieves quality comparable to current state-of-the-art methods.","PeriodicalId":202966,"journal":{"name":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optic Disc and Cup Segmentation Based on Deep Learning\",\"authors\":\"Pengzhi Qin, Linyan Wang, Hongbing Lv\",\"doi\":\"10.1109/ITNEC.2019.8729455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glaucoma is a disease that damages eye’s optic nerve, and it is the leading cause of global irreversible blindness. Optic nerve head (ONH) assessment is a convenient way to detect glaucoma early and cup to disc ratio (CDR) is an important index for ONH evaluation. Thus, it is a fundamental task to segment OD and OC from the fundus images automatically and accurately. Most existing method segment them separately, and rely on hand-crafted visual feature from fundus image. This paper presents universal approach for automatic optic disc and cup segmentation, which is based on deep learning, namely, modification of fully convolutional network (FCN) and the Inception building blocks in GoogleNet. For improving the segmentation performance further, we also introduce new optic disc localization and pre-processing method. Our experiments show that our method achieves quality comparable to current state-of-the-art methods.\",\"PeriodicalId\":202966,\"journal\":{\"name\":\"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNEC.2019.8729455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC.2019.8729455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

青光眼是一种损害眼睛视神经的疾病,是全球不可逆失明的主要原因。视神经头(ONH)评估是早期发现青光眼的简便方法,杯盘比(CDR)是评估ONH的重要指标。因此,从眼底图像中自动准确地分割出OD和OC是一项基本任务。现有的方法大多是分别对眼底图像进行分割,并依赖于手工从眼底图像中提取视觉特征。本文提出了一种通用的基于深度学习的自动视盘和视杯分割方法,即对GoogleNet中的全卷积网络(fully convolutional network, FCN)和Inception构建块进行修改。为了进一步提高分割性能,我们还引入了新的视盘定位和预处理方法。我们的实验表明,我们的方法达到了与目前最先进的方法相当的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optic Disc and Cup Segmentation Based on Deep Learning
Glaucoma is a disease that damages eye’s optic nerve, and it is the leading cause of global irreversible blindness. Optic nerve head (ONH) assessment is a convenient way to detect glaucoma early and cup to disc ratio (CDR) is an important index for ONH evaluation. Thus, it is a fundamental task to segment OD and OC from the fundus images automatically and accurately. Most existing method segment them separately, and rely on hand-crafted visual feature from fundus image. This paper presents universal approach for automatic optic disc and cup segmentation, which is based on deep learning, namely, modification of fully convolutional network (FCN) and the Inception building blocks in GoogleNet. For improving the segmentation performance further, we also introduce new optic disc localization and pre-processing method. Our experiments show that our method achieves quality comparable to current state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信