基于小波的图像恢复统计模型

Y. Wan, R. Nowak
{"title":"基于小波的图像恢复统计模型","authors":"Y. Wan, R. Nowak","doi":"10.1109/ICIP.2001.959087","DOIUrl":null,"url":null,"abstract":"We develop a wavelet-based statistical method a general class of image restoration problems. In this approach, a signal prior is set up by modeling the image wavelet coefficients as independent Gaussian mixture random variables. We first specify a uniform (non-informative) prior distribution on the mixing parameters, which leads to a simple and efficient iterative algorithm for MAP estimation. This algorithm is similar to the EM algorithm in that it alternates between a state estimation step and a maximization step. Moreover, we show that our algorithm converges monotonically to a local maximum of the posterior distribution. We next generalize the result to non-uniform priors and develop an efficient integer programming algorithm that enables a similar alternating optimization procedure.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A wavelet-based statistical model for image restoration\",\"authors\":\"Y. Wan, R. Nowak\",\"doi\":\"10.1109/ICIP.2001.959087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a wavelet-based statistical method a general class of image restoration problems. In this approach, a signal prior is set up by modeling the image wavelet coefficients as independent Gaussian mixture random variables. We first specify a uniform (non-informative) prior distribution on the mixing parameters, which leads to a simple and efficient iterative algorithm for MAP estimation. This algorithm is similar to the EM algorithm in that it alternates between a state estimation step and a maximization step. Moreover, we show that our algorithm converges monotonically to a local maximum of the posterior distribution. We next generalize the result to non-uniform priors and develop an efficient integer programming algorithm that enables a similar alternating optimization procedure.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.959087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.959087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们提出了一种基于小波的统计方法来解决一般类型的图像恢复问题。在该方法中,通过将图像小波系数建模为独立的高斯混合随机变量来建立信号先验。我们首先在混合参数上指定一个均匀的(非信息的)先验分布,从而得到一个简单有效的MAP估计迭代算法。该算法与EM算法相似,在状态估计步骤和最大化步骤之间交替进行。此外,我们还证明了我们的算法单调收敛于后验分布的一个局部最大值。接下来,我们将结果推广到非均匀先验,并开发了一种有效的整数规划算法,使类似的交替优化过程成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A wavelet-based statistical model for image restoration
We develop a wavelet-based statistical method a general class of image restoration problems. In this approach, a signal prior is set up by modeling the image wavelet coefficients as independent Gaussian mixture random variables. We first specify a uniform (non-informative) prior distribution on the mixing parameters, which leads to a simple and efficient iterative algorithm for MAP estimation. This algorithm is similar to the EM algorithm in that it alternates between a state estimation step and a maximization step. Moreover, we show that our algorithm converges monotonically to a local maximum of the posterior distribution. We next generalize the result to non-uniform priors and develop an efficient integer programming algorithm that enables a similar alternating optimization procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信