基于贝叶斯网络的连续多波段语音识别

K. Daoudi, D. Fohr, Christophe Antoine
{"title":"基于贝叶斯网络的连续多波段语音识别","authors":"K. Daoudi, D. Fohr, Christophe Antoine","doi":"10.1109/ASRU.2001.1034584","DOIUrl":null,"url":null,"abstract":"Using the Bayesian networks framework, we present a new multi-band approach for continuous speech recognition. This new approach has the advantage of overcoming all the limitations of the standard multi-band techniques. Moreover, it leads to a higher fidelity speech modeling than HMMs. We provide a preliminary evaluation of the performance of our new approach on a connected digits recognition task.","PeriodicalId":118671,"journal":{"name":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Continuous multi-band speech recognition using Bayesian networks\",\"authors\":\"K. Daoudi, D. Fohr, Christophe Antoine\",\"doi\":\"10.1109/ASRU.2001.1034584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the Bayesian networks framework, we present a new multi-band approach for continuous speech recognition. This new approach has the advantage of overcoming all the limitations of the standard multi-band techniques. Moreover, it leads to a higher fidelity speech modeling than HMMs. We provide a preliminary evaluation of the performance of our new approach on a connected digits recognition task.\",\"PeriodicalId\":118671,\"journal\":{\"name\":\"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2001.1034584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2001.1034584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

利用贝叶斯网络框架,提出了一种新的多频带连续语音识别方法。这种新方法的优点是克服了标准多波段技术的局限性。与hmm相比,该模型的语音建模保真度更高。我们对我们的新方法在连接数字识别任务上的性能进行了初步评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous multi-band speech recognition using Bayesian networks
Using the Bayesian networks framework, we present a new multi-band approach for continuous speech recognition. This new approach has the advantage of overcoming all the limitations of the standard multi-band techniques. Moreover, it leads to a higher fidelity speech modeling than HMMs. We provide a preliminary evaluation of the performance of our new approach on a connected digits recognition task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信