100+ Gbps多核平台IPv6报文转发

Thilan Ganegedara, V. Prasanna
{"title":"100+ Gbps多核平台IPv6报文转发","authors":"Thilan Ganegedara, V. Prasanna","doi":"10.1109/GLOCOM.2013.6831384","DOIUrl":null,"url":null,"abstract":"The migration from IPv4 to IPv6 addressing is gradually taking place with the exhaustion of IPv4 address space. This requires the network infrastructure to have the capability to process and route IPv6 packets. However, with the increased complexity of the lookup operation and storage requirements, performing IPv6 lookup at wire-speed is challenging. In this work, we propose a high-performance IPv6 lookup engine solution for multi-core platforms that deliver state-of-the-art line card throughput rates. In order to exploit the parallelism offered on modern multi-core platforms, we propose a routing table partitioning scheme that forms disjoint and balanced partitions, given a IPv6 routing table. These partitions are represented as range trees to perform the lookup operation. Due to the disjoint nature of the proposed partitioning scheme, the individual range trees are able to operate independently, improving the parallelism of the lookup engine. Our experimental results on state-of-the-art multi-core processors show that throughputs of 100+ Gbps can be achieved for 2 million entry IPv6 routing tables using the proposed scheme. Compared with existing literature, the proposed solution achieves 10× higher throughput and is on par with performance delivered by hardware IP lookup engines.","PeriodicalId":233798,"journal":{"name":"2013 IEEE Global Communications Conference (GLOBECOM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"100+ Gbps IPv6 packet forwarding on multi-core platforms\",\"authors\":\"Thilan Ganegedara, V. Prasanna\",\"doi\":\"10.1109/GLOCOM.2013.6831384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The migration from IPv4 to IPv6 addressing is gradually taking place with the exhaustion of IPv4 address space. This requires the network infrastructure to have the capability to process and route IPv6 packets. However, with the increased complexity of the lookup operation and storage requirements, performing IPv6 lookup at wire-speed is challenging. In this work, we propose a high-performance IPv6 lookup engine solution for multi-core platforms that deliver state-of-the-art line card throughput rates. In order to exploit the parallelism offered on modern multi-core platforms, we propose a routing table partitioning scheme that forms disjoint and balanced partitions, given a IPv6 routing table. These partitions are represented as range trees to perform the lookup operation. Due to the disjoint nature of the proposed partitioning scheme, the individual range trees are able to operate independently, improving the parallelism of the lookup engine. Our experimental results on state-of-the-art multi-core processors show that throughputs of 100+ Gbps can be achieved for 2 million entry IPv6 routing tables using the proposed scheme. Compared with existing literature, the proposed solution achieves 10× higher throughput and is on par with performance delivered by hardware IP lookup engines.\",\"PeriodicalId\":233798,\"journal\":{\"name\":\"2013 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2013.6831384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2013.6831384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着IPv4地址空间的枯竭,IPv4地址向IPv6地址的迁移正在逐步进行。这就要求网络基础设施具备处理和路由IPv6数据包的能力。然而,随着查找操作和存储需求的复杂性的增加,以线速执行IPv6查找是具有挑战性的。在这项工作中,我们提出了一种高性能的IPv6查找引擎解决方案,用于提供最先进的线路卡吞吐率的多核平台。为了利用现代多核平台提供的并行性,我们提出了一种路由表分区方案,该方案在给定IPv6路由表的情况下形成不相交和平衡的分区。这些分区表示为范围树,以执行查找操作。由于所提出的分区方案的不连接性,单个范围树能够独立操作,从而提高了查找引擎的并行性。我们在最先进的多核处理器上的实验结果表明,使用所提出的方案,200万条目IPv6路由表可以实现100+ Gbps的吞吐量。与现有文献相比,提出的解决方案实现了10倍的吞吐量,并且与硬件IP查找引擎提供的性能相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
100+ Gbps IPv6 packet forwarding on multi-core platforms
The migration from IPv4 to IPv6 addressing is gradually taking place with the exhaustion of IPv4 address space. This requires the network infrastructure to have the capability to process and route IPv6 packets. However, with the increased complexity of the lookup operation and storage requirements, performing IPv6 lookup at wire-speed is challenging. In this work, we propose a high-performance IPv6 lookup engine solution for multi-core platforms that deliver state-of-the-art line card throughput rates. In order to exploit the parallelism offered on modern multi-core platforms, we propose a routing table partitioning scheme that forms disjoint and balanced partitions, given a IPv6 routing table. These partitions are represented as range trees to perform the lookup operation. Due to the disjoint nature of the proposed partitioning scheme, the individual range trees are able to operate independently, improving the parallelism of the lookup engine. Our experimental results on state-of-the-art multi-core processors show that throughputs of 100+ Gbps can be achieved for 2 million entry IPv6 routing tables using the proposed scheme. Compared with existing literature, the proposed solution achieves 10× higher throughput and is on par with performance delivered by hardware IP lookup engines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信