神经网络参数对神经网络预测性能的影响

A. Azadeh, Behshtipour
{"title":"神经网络参数对神经网络预测性能的影响","authors":"A. Azadeh, Behshtipour","doi":"10.1109/INDIN.2008.4618341","DOIUrl":null,"url":null,"abstract":"This paper deal first with artificial neural networks for demand forecasting, neural networks have successfully been used for demand forecasting, however, due to a large number of parameters to be estimated empirically, it is not a simple task to select the appropriate neural network architecture for a demand forecasting problem. Researchers often overlook the effect of neural network parameters on the performance of neural network forecasting. This paper examines the effects of the number of input and hidden nodes and hidden layers as well as the size of the training sample on the in-sample and out-of-sample performance. The second objective of this paper is to describe a new forecasting approach inspired from regression method for weekly demand forecasting, we have used this approach for demand forecasting as a benchmark for comparison. This method performs an extensive search in order to select the appropriate transformation functions of input variables, the weighting factors and the training periods to be used, by taking into consideration the correlation analysis of the selected input variables. With this procedure the best forecasting model is formed.","PeriodicalId":112553,"journal":{"name":"2008 6th IEEE International Conference on Industrial Informatics","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The effect of neural network parameters on the performance of neural network forecasting\",\"authors\":\"A. Azadeh, Behshtipour\",\"doi\":\"10.1109/INDIN.2008.4618341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deal first with artificial neural networks for demand forecasting, neural networks have successfully been used for demand forecasting, however, due to a large number of parameters to be estimated empirically, it is not a simple task to select the appropriate neural network architecture for a demand forecasting problem. Researchers often overlook the effect of neural network parameters on the performance of neural network forecasting. This paper examines the effects of the number of input and hidden nodes and hidden layers as well as the size of the training sample on the in-sample and out-of-sample performance. The second objective of this paper is to describe a new forecasting approach inspired from regression method for weekly demand forecasting, we have used this approach for demand forecasting as a benchmark for comparison. This method performs an extensive search in order to select the appropriate transformation functions of input variables, the weighting factors and the training periods to be used, by taking into consideration the correlation analysis of the selected input variables. With this procedure the best forecasting model is formed.\",\"PeriodicalId\":112553,\"journal\":{\"name\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 6th IEEE International Conference on Industrial Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2008.4618341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th IEEE International Conference on Industrial Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2008.4618341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文首先讨论了用于需求预测的人工神经网络,神经网络已经成功地用于需求预测,但是由于需要经验估计大量的参数,为需求预测问题选择合适的神经网络结构并不是一项简单的任务。研究人员往往忽视了神经网络参数对神经网络预测性能的影响。本文考察了输入和隐藏节点和隐藏层的数量以及训练样本的大小对样本内和样本外性能的影响。本文的第二个目标是描述一种新的预测方法,这种方法受到每周需求预测回归方法的启发,我们已经将这种方法用于需求预测作为比较的基准。该方法通过对所选输入变量的相关性分析,进行广泛搜索,选择合适的输入变量变换函数、权重因子和训练周期。通过这一过程,形成了最佳的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of neural network parameters on the performance of neural network forecasting
This paper deal first with artificial neural networks for demand forecasting, neural networks have successfully been used for demand forecasting, however, due to a large number of parameters to be estimated empirically, it is not a simple task to select the appropriate neural network architecture for a demand forecasting problem. Researchers often overlook the effect of neural network parameters on the performance of neural network forecasting. This paper examines the effects of the number of input and hidden nodes and hidden layers as well as the size of the training sample on the in-sample and out-of-sample performance. The second objective of this paper is to describe a new forecasting approach inspired from regression method for weekly demand forecasting, we have used this approach for demand forecasting as a benchmark for comparison. This method performs an extensive search in order to select the appropriate transformation functions of input variables, the weighting factors and the training periods to be used, by taking into consideration the correlation analysis of the selected input variables. With this procedure the best forecasting model is formed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信