R. Zawadzki, Stacey S. Choi, J. W. Evans, J. Werner
{"title":"发展自适应光学的挑战和可能性:用于临床体内视网膜成像的超高分辨率光学相干断层扫描","authors":"R. Zawadzki, Stacey S. Choi, J. W. Evans, J. Werner","doi":"10.1117/12.819169","DOIUrl":null,"url":null,"abstract":"Recent developments in adaptive optics - optical coherence tomography (AO-OCT) allow for ultra-high isotropic resolution imaging of the in-vivo retina, offering unprecedented insight into its volumetric microscopic and cellular structures. In addition to this promising achievement, the clinical impact and application of this technology still needs to be explored. This includes assessment of limitations and challenges for existing as well as future AO-OCT systems, especially in the context of potential transfer of this technology from an optical bench to a portable imaging system. To address these issues we will describe our current AO-UHR-OCT focusing on its sub-components, as well as application for clinical imaging. Additionally, we describe some directions for future development of our AO-OCT instrument that would improve its clinical utility including: new compact AO-OCT design, new improved AO sub-system (extreme AO), and new generations of Fourier-domain-OCT.","PeriodicalId":184459,"journal":{"name":"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges and possibilities for developing adaptive optics: ultra-high resolution optical coherence tomography for clinical in vivo retinal imaging\",\"authors\":\"R. Zawadzki, Stacey S. Choi, J. W. Evans, J. Werner\",\"doi\":\"10.1117/12.819169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in adaptive optics - optical coherence tomography (AO-OCT) allow for ultra-high isotropic resolution imaging of the in-vivo retina, offering unprecedented insight into its volumetric microscopic and cellular structures. In addition to this promising achievement, the clinical impact and application of this technology still needs to be explored. This includes assessment of limitations and challenges for existing as well as future AO-OCT systems, especially in the context of potential transfer of this technology from an optical bench to a portable imaging system. To address these issues we will describe our current AO-UHR-OCT focusing on its sub-components, as well as application for clinical imaging. Additionally, we describe some directions for future development of our AO-OCT instrument that would improve its clinical utility including: new compact AO-OCT design, new improved AO sub-system (extreme AO), and new generations of Fourier-domain-OCT.\",\"PeriodicalId\":184459,\"journal\":{\"name\":\"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.819169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.819169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Challenges and possibilities for developing adaptive optics: ultra-high resolution optical coherence tomography for clinical in vivo retinal imaging
Recent developments in adaptive optics - optical coherence tomography (AO-OCT) allow for ultra-high isotropic resolution imaging of the in-vivo retina, offering unprecedented insight into its volumetric microscopic and cellular structures. In addition to this promising achievement, the clinical impact and application of this technology still needs to be explored. This includes assessment of limitations and challenges for existing as well as future AO-OCT systems, especially in the context of potential transfer of this technology from an optical bench to a portable imaging system. To address these issues we will describe our current AO-UHR-OCT focusing on its sub-components, as well as application for clinical imaging. Additionally, we describe some directions for future development of our AO-OCT instrument that would improve its clinical utility including: new compact AO-OCT design, new improved AO sub-system (extreme AO), and new generations of Fourier-domain-OCT.